scholarly journals Augmented reality for the virtual dissection of white matter pathways

Author(s):  
Sebastian Ille ◽  
Ann-Katrin Ohlerth ◽  
David Colle ◽  
Henry Colle ◽  
Olga Dragoy ◽  
...  

Abstract Background The human white matter pathway network is complex and of critical importance for functionality. Thus, learning and understanding white matter tract anatomy is important for the training of neuroscientists and neurosurgeons. The study aims to test and evaluate a new method for fiber dissection using augmented reality (AR) in a group which is experienced in cadaver white matter dissection courses and in vivo tractography. Methods Fifteen neurosurgeons, neurolinguists, and neuroscientists participated in this questionnaire-based study. We presented five cases of patients with left-sided perisylvian gliomas who underwent awake craniotomy. Diffusion tensor imaging fiber tracking (DTI FT) was performed and the language-related networks were visualized separated in different tracts by color. Participants were able to virtually dissect the prepared DTI FTs using a spatial computer and AR goggles. The application was evaluated through a questionnaire with answers from 0 (minimum) to 10 (maximum). Results Participants rated the overall experience of AR fiber dissection with a median of 8 points (mean ± standard deviation 8.5 ± 1.4). Usefulness for fiber dissection courses and education in general was rated with 8 (8.3 ± 1.4) and 8 (8.1 ± 1.5) points, respectively. Educational value was expected to be high for several target audiences (student: median 9, 8.6 ± 1.4; resident: 9, 8.5 ± 1.8; surgeon: 9, 8.2 ± 2.4; scientist: 8.5, 8.0 ± 2.4). Even clinical application of AR fiber dissection was expected to be of value with a median of 7 points (7.0 ± 2.5). Conclusion The present evaluation of this first application of AR for fiber dissection shows a throughout positive evaluation for educational purposes.

Author(s):  
Corie W. Wei ◽  
Gang Guo ◽  
David J. Mikulis

Background:Diffusion tensor MRI fiber tractography (DTT) is the first non-invasive in vivo technique for delineating specific white matter (WM) tracts. In cerebral neoplasm, DTT can be used to illustrate the relationship of the tumor with respect to adjacent WM trajectories.Methods:Fiber tractography was used in this study to assess tumor-induced changes in WM trajectories in three cases of cerebral neoplasm: glioblastoma multiforme, meningioma, and anaplastic astrocytoma.Results:Three patterns of WM alteration were identified: 1) disruption, 2) displacement, and 3) infiltration. Tumor disruption of WM tracts was observed in glioblastoma multiforme, which terminated fibers crossing the corpus callosum. In meningioma, DTT illustrated bulk displacement of the corticospinal tract in the affected hemisphere as well as preservation of the deviated axons. In anaplastic astrocytoma, fiber tracking demonstrated disruption of WM tracts at the tumor origin as well as intact axons through areas of tumor infiltration.Conclusions:Fiber tracking results correlated with the clinical and histopathological features of the tumor. Larger case series will be required to determine if fiber tracking can add accuracy to existing imaging methods for grading tumors.


2007 ◽  
Vol 107 (3) ◽  
pp. 488-494 ◽  
Author(s):  
Jeffrey I. Berman ◽  
Mitchel S. Berger ◽  
Sungwon Chung ◽  
Srikantan S. Nagarajan ◽  
Roland G. Henry

Object Resecting brain tumors involves the risk of damaging the descending motor pathway. Diffusion tensor (DT)–imaged fiber tracking is a noninvasive magnetic resonance (MR) technique that can delineate the subcortical course of the motor pathway. The goal of this study was to use intraoperative subcortical stimulation mapping of the motor tract and magnetic source imaging to validate the utility of DT-imaged fiber tracking as a tool for presurgical planning. Methods Diffusion tensor-imaged fiber tracks of the motor tract were generated preoperatively in nine patients with gliomas. A mask of the resultant fiber tracks was overlaid on high-resolution T1- and T2-weighted anatomical MR images and used for stereotactic surgical navigation. Magnetic source imaging was performed in seven of the patients to identify functional somatosensory cortices. During resection, subcortical stimulation mapping of the motor pathway was performed within the white matter using a bipolar electrode. Results A total of 16 subcortical motor stimulations were stereotactically identified in nine patients. The mean distance between the stimulation sites and the DT-imaged fiber tracks was 8.7 ±3.1 mm (±standard deviation). The measured distance between subcortical stimulation sites and DT-imaged fiber tracks combines tracking technique errors and all errors encountered with stereotactic navigation. Conclusions Fiber tracks delineated using DT imaging can be used to identify the motor tract in deep white matter and define a safety margin around the tract.


Radiology ◽  
2014 ◽  
Vol 272 (1) ◽  
pp. 202-209 ◽  
Author(s):  
Max Wintermark ◽  
Diane S. Huss ◽  
Binit B. Shah ◽  
Nicholas Tustison ◽  
T. Jason Druzgal ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Xinfeng Yu ◽  
Xinzhen Yin ◽  
Hui Hong ◽  
Shuyue Wang ◽  
Yeerfan Jiaerken ◽  
...  

Abstract Background White matter hyperintensities (WMHs) are one of the hallmarks of cerebral small vessel disease (CSVD), but the pathological mechanisms underlying WMHs remain unclear. Recent studies suggest that extracellular fluid (ECF) is increased in brain regions with WMHs. It has been hypothesized that ECF accumulation may have detrimental effects on white matter microstructure. To test this hypothesis, we used cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) as a unique CSVD model to investigate the relationships between ECF and fiber microstructural changes in WMHs. Methods Thirty-eight CADASIL patients underwent 3.0 T MRI with multi-model sequences. Parameters of free water (FW) and apparent fiber density (AFD) obtained from diffusion-weighted imaging (b = 0 and 1000 s/mm2) were respectively used to quantify the ECF and fiber density. WMHs were split into four subregions with four levels of FW using quartiles (FWq1 to FWq4) for each participant. We analyzed the relationships between FW and AFD in each subregion of WMHs. Additionally, we tested whether FW of WMHs were associated with other accompanied CSVD imaging markers including lacunes and microbleeds. Results We found an inverse correlation between FW and AFD in WMHs. Subregions of WMHs with high-level of FW (FWq3 and FWq4) were accompanied with decreased AFD and with changes in FW-corrected diffusion tensor imaging parameters. Furthermore, FW was also independently associated with lacunes and microbleeds. Conclusions Our study demonstrated that increased ECF was associated with WM degeneration and the occurrence of lacunes and microbleeds, providing important new insights into the role of ECF in CADASIL pathology. Improving ECF drainage might become a therapeutic strategy in future.


2018 ◽  
Vol 223 (8) ◽  
pp. 3681-3688 ◽  
Author(s):  
Thomas Decramer ◽  
Stijn Swinnen ◽  
Johannes van Loon ◽  
Peter Janssen ◽  
Tom Theys

2021 ◽  
Vol 11 ◽  
Author(s):  
Taoyang Yuan ◽  
Jianyou Ying ◽  
Chuzhong Li ◽  
Lu Jin ◽  
Jie Kang ◽  
...  

BackgroundThe growth hormone (GH) and insulin-like-growth factor 1 (IGF-1) axis has long been recognized for its critical role in brain growth, development. This study was designed to investigate microstructural pathology in the cortex and white matter in growth hormone-secreting pituitary adenoma, which characterized by excessive secretion of GH and IGF-1.Methods29 patients with growth hormone-secreting pituitary adenoma (acromegaly) and 31 patients with non-functional pituitary adenoma as controls were recruited and assessed using neuropsychological test, surface-based morphometry, T1/T2-weighted myelin-sensitive magnetic resonance imaging, neurite orientation dispersion and density imaging, and diffusion tensor imaging.ResultsCompared to controls, we found 1) acromegaly had significantly increased cortical thickness throughout the bilateral cortex (pFDR < 0.05). 2) T1/T2-weighted ratio in the cortex were decreased in the bilateral occipital cortex and pre/postcentral central gyri but increased in the bilateral fusiform, insular, and superior temporal gyri in acromegaly (pFDR < 0.05). 3) T1/T2-weighted ratio were decreased in most bundles, and only a few areas showed increases in acromegaly (pFDR < 0.05). 4) Neurite density index (NDI) was significantly lower throughout the cortex and bundles in acromegaly (pTFCE < 0.05). 5) lower fractional anisotropy (FA) and higher mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) in extensive bundles in acromegaly (pTFCE < 0.05). 6) microstructural pathology in the cortex and white matter were associated with neuropsychological dysfunction in acromegaly.ConclusionsOur findings suggested that long-term persistent and excess serum GH/IGF-1 levels alter the microstructure in the cortex and white matter in acromegaly, which may be responsible for neuropsychological dysfunction.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Allen A Champagne ◽  
Emile Peponoulas ◽  
Itamar Terem ◽  
Andrew Ross ◽  
Maryam Tayebi ◽  
...  

Abstract Increasing evidence for the cumulative effects of head trauma on structural integrity of the brain has emphasized the need to understand the relationship between tissue mechanic properties and injury susceptibility. Here, diffusion tensor imaging, helmet accelerometers and amplified magnetic resonance imaging were combined to gather insight about the region-specific vulnerability of the corpus callosum to microstructural changes in white-matter integrity upon exposure to sub-concussive impacts. A total of 33 male Canadian football players (meanage = 20.3 ± 1.4 years) were assessed at three time points during a football season (baseline pre-season, mid-season and post-season). The athletes were split into a LOW (N = 16) and HIGH (N = 17) exposure group based on the frequency of sub-concussive impacts sustained on a per-session basis, measured using the helmet-mounted accelerometers. Longitudinal decreases in fractional anisotropy were observed in anterior and posterior regions of the corpus callosum (average cluster size = 40.0 ± 4.4 voxels; P < 0.05, corrected) for athletes from the HIGH exposure group. These results suggest that the white-matter tract may be vulnerable to repetitive sub-concussive collisions sustained over the course of a football season. Using these findings as a basis for further investigation, a novel exploratory analysis of strain derived from sub-voxel motion of brain tissues in response to cardiac impulses was developed using amplified magnetic resonance imaging. This approach revealed specific differences in strain (and thus possibly stiffness) along the white-matter tract (P < 0.0001) suggesting a possible signature relationship between changes in white-matter integrity and tissue mechanical properties. In light of these findings, additional information about the viscoelastic behaviour of white-matter tissues may be imperative in elucidating the mechanisms responsible for region-specific differences in injury susceptibility observed, for instance, through changes in microstructural integrity following exposure to sub-concussive head impacts.


NeuroImage ◽  
2004 ◽  
Vol 22 (3) ◽  
pp. 1302-1314 ◽  
Author(s):  
Savannah C Partridge ◽  
Pratik Mukherjee ◽  
Roland G Henry ◽  
Steven P Miller ◽  
Jeffrey I Berman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document