transplacental exposure
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 6)

H-INDEX

19
(FIVE YEARS 1)

Endocrinology ◽  
2021 ◽  
Author(s):  
Jinhwan Lim ◽  
Aramandla Ramesh ◽  
Toshi Shioda ◽  
Kathleen Leon ◽  
Ulrike Luderer

Abstract Polycyclic aromatic hydrocarbons like benzo[a]pyrene (BaP) are generated during incomplete combustion of organic materials. Prior research has demonstrated that BaP is a prenatal ovarian toxicant and carcinogen. However, the metabolic pathways active in the embryo and its developing gonads and the mechanisms by which prenatal exposure to BaP predisposes to ovarian tumors later in life remain to be fully elucidated. To address these data gaps, we orally dosed pregnant female mice with BaP from E6.5-11.5 (0, 0.2 or 2 mg/kg-day) for metabolite measurement or E9.5-11.5 (0 or 3.33 mg/kg-day) for embryonic gonad RNA-sequencing. Embryos were harvested at E13.5 for both experiments. The sum of BaP metabolite concentrations increased significantly with dose in the embryos and placentas, and concentrations were significantly higher in female than male embryos and in embryos than placentas. RNA sequencing revealed that enzymes involved in metabolic activation of BaP are expressed at moderate to high levels in embryonic gonads and that greater transcriptomic changes occurred in the ovaries in response to BaP than in the testes. We identified 490 differentially expressed genes (DEGs) with FDR p-values <0.05 when comparing BaP-exposed to control ovaries, but no statistically significant DEGs between BaP-exposed and control testes. Genes related to monocyte/macrophage recruitment and activity, prolactin family genes, and several keratin genes were among the most upregulated genes in the BaP-exposed ovaries. Results show that developing ovaries are more sensitive than testes to prenatal BaP exposure, which may be related to higher concentrations of BaP metabolites in female embryos.


2021 ◽  
Vol 12 ◽  
Author(s):  
Claudia Gundacker ◽  
Klaudia Graf-Rohrmeister ◽  
Martin Gencik ◽  
Markus Hengstschläger ◽  
Karol Holoman ◽  
...  

Prenatal exposure to perfluoroalkyl substances (PFAS), bisphenol A (BPA), lead (Pb), total mercury (THg), and methylmercury (MeHg) can affect fetal development. Factors influencing placental transfer rate of these toxins are poorly investigated. Whether prenatal exposure to pollutants has an effect on birth weight is incompletely understood. We therefore aimed (1) to determine placental transfer rates of PFAS, BPA, Pb, THg, and MeHg, (2) to analyze relationships between fetal exposure and birth outcome and (3) to analyze gene variants as mediators of placental transfer rates and birth outcome. Two hundred healthy pregnant women and their newborns participated in the study. BPA, 16 PFAS, THg, MeHg, and Pb were determined using HPLCMS/MS (BPA, PFAS), HPLC-CV-ICPMS (MeHg), CV-AFS (THg), and GF-AAS (Pb). Questionnaires and medical records were used to survey exposure sources and birth outcome. 20 single nucleotide polymorphisms and two deletion polymorphisms were determined by real-time PCR from both maternal and newborn blood. Genotype-phenotype associations were analyzed by categorical regression and logistic regression analysis. Specific gene variants were associated with altered placental transfer of PFAS (ALAD Lys59Asn, ABCG2 Gln141Lys), THg (UGT Tyr85Asp, GSTT1del, ABCC1 rs246221) and Pb (GSTP1 Ala114Val). A certain combination of three gene polymorphisms (ABCC1 rs246221, GCLM rs41303970, HFE His63Asp) was over-represented in newborns small for gestational age. 36% of Austrian and 75% of Slovakian mothers had levels exceeding the HBM guidance value I (2 μg/L) of the German HBM Commission for PFOA. 13% of newborns and 39% of women had Ery-Pb levels above 24 μg/kg, an approximation for the BMDL01 of 12 μg/L set by the European Food Safety Authority (EFSA). Our findings point to the need to minimize perinatal exposures to protect fetal health, especially those genetically predisposed to increased transplacental exposure.


Medicina ◽  
2021 ◽  
Vol 57 (4) ◽  
pp. 382
Author(s):  
Alekandra Fucic ◽  
Alberto Mantovani ◽  
Gavin W. ten Tusscher

Holistic and life-long medical surveillance is the core of personalised medicine and supports an optimal implementation of both preventive and curative healthcare. Personal medical records are only partially unified by hospital or general practitioner informatics systems, but only for citizens with long-term permanent residence. Otherwise, insight into the medical history of patients greatly depends on their medical archive and memory. Additionally, occupational exposure records are not combined with clinical or general practitioner records. Environmental exposure starts preconceptionally and continues during pregnancy by transplacental exposure. Antenatal exposure is partially dependent on parental lifestyle, residence and occupation. Newborn screening (NBS) is currently being performed in developed countries and includes testing for rare genetic, hormone-related, and metabolic conditions. Transplacental exposure to substances such as endocrine disruptors, air pollutants and drugs may have life-long health consequences. However, despite the recognised impact of transplacental exposure on the increased risk of metabolic syndrome, neurobehavioral disorders as well as immunodisturbances including allergy and infertility, not a single test within NBS is geared toward detecting biomarkers of exposure (xenobiotics or their metabolites, nutrients) or effect such as oestradiol, testosterone and cytokines, known for being associated with various health risks and disturbed by transplacental xenobiotic exposures. The outcomes of ongoing exposome projects might be exploited to this purpose. Developing and using a OneHealth Medical Record (OneHealthMR) may allow the incorporated chip to harvest information from different sources, with high integration added value for health prevention and care: environmental exposures, occupational health records as well as diagnostics of chronic diseases, allergies and medication usages, from birth and throughout life. Such a concept may present legal and ethical issues pertaining to personal data protection, requiring no significant investments and exploits available technologies and algorithms, putting emphasis on the prevention and integration of environmental exposure and health data.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Gabriela Morales-Velazquez ◽  
Blanca Patricia Lazalde-Ramos ◽  
Belinda Claudia Gómez-Meda ◽  
Guillermo Moisés Zúñiga-González ◽  
Yveth Marlene Ortiz-García ◽  
...  

Jatropha dioica is traditionally used owing to its antiviral, antifungal, and antimicrobial properties. But, toxicological information regarding J. dioica root total extract is currently limited. The aim of this work was to evaluate in a rat model, the transplacental genotoxicity effect of J. dioica aqueous root total extract. Three different J. dioica aqueous root total extract doses (60, 100, and 300 mg/kg) were administered orally to Wistar rats during 5 days through the pregnancy term (16–21 days). Pregnant rats were sampled every 24 h during the last 6 days of gestation, and pubs were sampled at birth. Genome damage in dams and their newborn pups transplacentally exposed to J. dioica was evaluated by in vivo micronuclei assay. We evaluated the frequency of micronucleated erythrocytes (MNE), micronucleated polychromatic erythrocytes (MNPCE), and polychromatic erythrocytes (PCE) in peripheral blood samples from pups and MNPCE and PCE in pregnant rats. No genotoxic effect was observed after oral administration of the three different doses of aqueous root total extract of J. dioica in pregnant or in their newborn pubs, after transplacental exposure. A significant decrease in PCE frequency was noted in samples from pubs of rats treated with the highest dose of J. dioica extract. The aqueous total root extract of J. dioica at the highest dose tested in our research do have cytotoxic effect in pups transplacentally exposed to this plant extract. Moreover, neither a genotoxic nor a cytotoxic effect was observed in pregnant rats. In the present work, there was no evidence of genome damage in the rat model after transplacental exposure to J. dioica aqueous root total extract.


2018 ◽  
pp. 326-340
Author(s):  
S.M. Torres ◽  
D.M. Walker ◽  
R.L. Divi ◽  
M.C. Poirier ◽  
V.E. Walker

2017 ◽  
Vol 72 ◽  
pp. 18
Author(s):  
Alberto Mantovani ◽  
Birgit Peter

Sign in / Sign up

Export Citation Format

Share Document