scholarly journals Microbial electroactive biofilms dominated by Geoalkalibacter spp. from a highly saline–alkaline environment

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Sukrampal Yadav ◽  
Sunil A. Patil

Abstract Understanding of the extreme microorganisms that possess extracellular electron transfer (EET) capabilities is pivotal to advance electromicrobiology discipline and to develop niche-specific microbial electrochemistry-driven biotechnologies. Here, we report on the microbial electroactive biofilms (EABs) possessing the outward EET capabilities from a haloalkaline environment of the Lonar lake. We used the electrochemical cultivation approach to enrich haloalkaliphilic EABs under 9.5 pH and 20 g/L salinity conditions. The electrodes controlled at 0.2 V vs. Ag/AgCl yielded the best-performing biofilms in terms of maximum bioelectrocatalytic current densities of 548 ± 23 and 437 ± 17 µA/cm2 with acetate and lactate substrates, respectively. Electrochemical characterization of biofilms revealed the presence of two putative redox-active moieties with the mean formal potentials of 0.183 and 0.333 V vs. Ag/AgCl, which represent the highest values reported to date for the EABs. 16S-rRNA amplicon sequencing of EABs revealed the dominance of unknown Geoalkalibacter sp. at ~80% abundance. Further investigations on the haloalkaliphilic EABs possessing EET components with high formal potentials might offer interesting research prospects in electromicrobiology.

Geoderma ◽  
2022 ◽  
Vol 408 ◽  
pp. 115580
Author(s):  
Duyen Minh Pham ◽  
Hiroshi Oji ◽  
Shinya Yagi ◽  
Satoshi Ogawa ◽  
Arata Katayama

2017 ◽  
Vol 56 (11) ◽  
pp. 6380-6392 ◽  
Author(s):  
Jules Moutet ◽  
Christian Philouze ◽  
Amaury du Moulinet d’Hardemare ◽  
Nicolas Leconte ◽  
Fabrice Thomas

2017 ◽  
Vol 114 ◽  
pp. 8-12 ◽  
Author(s):  
Masahiro Kaneko ◽  
Masahito Ishikawa ◽  
Kazuhito Hashimoto ◽  
Shuji Nakanishi

Author(s):  
Takashi Fujikawa ◽  
Yoshitoshi Ogura ◽  
Koki Ishigami ◽  
Yoshihiro Kawano ◽  
Miyuki Nagamine ◽  
...  

Abstract Geobacter sulfurreducens produces high current densities and it has been used as a model organism for extracellular electron transfer studies. Nine G. sulfurreducens strains were isolated from biofilms formed on an anode poised at –0.2 V (vs. SHE) in a bioelectrochemical system in which river sediment was used as an inoculum. The maximum current density of an isolate, strain YM18 (9.29 A/m2), was higher than that of the strains PCA (5.72 A/m2), the type strain of G. sulfurreducens, and comparable to strain KN400 (8.38 A/m2), which is another high current producing strain of G. sulfurreducens. Genomic comparison of strains PCA, KN400, and YM18 revealed that omcB, xapD, spc, and ompJ, which are known to be important genes for iron reduction and current production in PCA, were not present in YM18. In the PCA and KN400 genomes, two and one region (s) encoding CRISPR/Cas systems were identified, respectively, but they were missing in the YM18 genome. These results indicate that there is genetic variation in the key components involved in extracellular electron transfer among G. sulfurreducens strains.


2020 ◽  
Author(s):  
Shiyan Zhuo ◽  
Guiqin Yang ◽  
Li Zhuang

AbstractElectrically conductive pili (e-pili) enable electron transport over multiple cell lengths to extracellular environments and play an important role in extracellular electron transfer (EET) of Geobacter species. To date, the studies of e-pili have mainly focused on Geobacter sulfurreducens and the closely related Geobacter metallireducens because of their developed genetic manipulation systems. We investigated the role of G. soli pili in EET by directly deleting the pilin gene, pilA, which is predicted to encode e-pili. Deletion of pilA, prevented the production of pili, resulting in poor Fe(III) oxide reduction and low current production, implying that G. soli pili is required for EET. To further evaluate the conductivity of G. soli pili compared with G. sulfurreducens pili, the pilA of G. soli was heterologously expressed in G. sulfurreducens, yielding the G. sulfurreducens strain GSP. This strain produced abundant pili with similar conductivity to the control strain that expressed native G. sulfurreducens pili, consistent with G. soli as determined by direct measurement, which suggested that G. soli pili is electrically conductive. Surprisingly, strain GSP was deficient in Fe(III) oxide reduction and current production due to the impaired content of outer-surface c-type cytochromes. These results demonstrated that heterologous pili of G. sulfurreducens severely reduces the content of outer-surface c-type cytochromes and consequently eliminates the capacity for EET, which strongly suggests an attention should be paid to the content of c-type cytochromes when employing G. sulfurreducens to heterologously express pili from other microorganisms.IMPORTANCEThe studies of electrically conductive pili (e-pili) of Geobacter species are of interest because of its application prospects in electronic materials. e-Pili are considered a substitution for electronic materials due to its renewability, biodegradability and robustness. Continued exploration of additional e-pili of Geobacter soli will improve the understanding of their biological role in extracellular electron transfer and expand the range of available electronic materials. Heterologously expressing the pilin genes from phylogenetically diverse microorganisms has been proposed as an emerging approach to screen potential e-pili according to high current densities. However, our results indicated that a Geobacter sulfurreducens strain heterologously expressing a pilin gene produced low current densities that resulted from a lack of content of c-type cytochromes, which were likely to possess e-pili. These results provide referential significance to yield e-pili from diverse microorganisms.


2012 ◽  
Vol 78 (19) ◽  
pp. 6987-6995 ◽  
Author(s):  
Misha G. Mehta-Kolte ◽  
Daniel R. Bond

ABSTRACTThe current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial generaGeobacterandShewanella. However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of theAcidobacteria,Geothrix fermentans. In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE),G. fermentansrequired potentials as high as 0.55 V to respire at its maximum rate. In addition,G. fermentanssecreted two different soluble redox-active electron shuttles with separate redox potentials (−0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found inG. fermentanssupernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals thatGeothrixis able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined toShewanella, and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies ofGeothrixandGeobacter, these two groups of bacteria could exist in distinctive environmental niches defined by redox potential.


2012 ◽  
Vol 40 (6) ◽  
pp. 1295-1301 ◽  
Author(s):  
Leonor Morgado ◽  
Ana P. Fernandes ◽  
Joana M. Dantas ◽  
Marta A. Silva ◽  
Carlos A. Salgueiro

Extracellular electron transfer is one of the physiological hallmarks of Geobacter sulfurreducens, allowing these bacteria to reduce toxic and/or radioactive metals and grow on electrode surfaces. Aiming to functionally optimize the respiratory electron-transfer chains, such properties can be explored through genetically engineered strains. Geobacter species comprise a large number of different multihaem c-type cytochromes involved in the extracellular electron-transfer pathways. The functional characterization of multihaem proteins is particularly complex because of the coexistence of several microstates in solution, connecting the fully reduced and oxidized states. NMR spectroscopy has been used to monitor the stepwise oxidation of each individual haem and thus to obtain information on each microstate. For the structural study of these proteins, a cost-effective isotopic labelling of the protein polypeptide chains was combined with the comparative analysis of 1H-13C HSQC (heteronuclear single-quantum correlation) NMR spectra obtained for labelled and unlabelled samples. These new methodological approaches allowed us to study G. sulfurreducens haem proteins functionally and structurally, revealing functional mechanisms and key residues involved in their electron-transfer capabilities. Such advances can now be applied to the design of engineered haem proteins to improve the bioremediation and electricity-harvesting skills of G. sulfurreducens.


2021 ◽  
Vol 9 (2) ◽  
pp. 293
Author(s):  
Marisa M. Faustino ◽  
Bruno M. Fonseca ◽  
Nazua L. Costa ◽  
Diana Lousa ◽  
Ricardo O. Louro ◽  
...  

Bioelectrochemical systems (BES) are emerging as a suite of versatile sustainable technologies to produce electricity and added-value compounds from renewable and carbon-neutral sources using electroactive organisms. The incomplete knowledge on the molecular processes that allow electroactive organisms to exchange electrons with electrodes has prevented their real-world implementation. In this manuscript we investigate the extracellular electron transfer processes performed by the thermophilic Gram-positive bacteria belonging to the Thermincola genus, which were found to produce higher levels of current and tolerate higher temperatures in BES than mesophilic Gram-negative bacteria. In our study, three multiheme c-type cytochromes, Tfer_0070, Tfer_0075, and Tfer_1887, proposed to be involved in the extracellular electron transfer pathway of T. ferriacetica, were cloned and over-expressed in E. coli. Tfer_0070 (ImdcA) and Tfer_1887 (PdcA) were purified and biochemically characterized. The electrochemical characterization of these proteins supports a pathway of extracellular electron transfer via these two proteins. By contrast, Tfer_0075 (CwcA) could not be stabilized in solution, in agreement with its proposed insertion in the peptidoglycan wall. However, based on the homology with the outer-membrane cytochrome OmcS, a structural model for CwcA was developed, providing a molecular perspective into the mechanisms of electron transfer across the peptidoglycan layer in Thermincola.


Author(s):  
Toshiyuki Ueki ◽  
David J. F. Walker ◽  
Kelly P. Nevin ◽  
Joy E. Ward ◽  
Trevor L. Woodard ◽  
...  

Geobacter sulfurreducens is a model microbe for the study of biogeochemically and technologically significant processes, such as the reduction of Fe(III) oxides in soils and sediments, bioelectrochemical applications that produce electric current from waste organic matter or drive useful processes with the consumption of renewable electricity, direct interspecies electron transfer in anaerobic digestors and methanogenic soils and sediments, and metal corrosion. Elucidating the phenotypes associated with gene deletions is an important strategy for determining the mechanisms for extracellular electron transfer in G. sulfurreducens .


Sign in / Sign up

Export Citation Format

Share Document