scholarly journals New version of the gedanken experiments to test the weak cosmic censorship in charged dilaton-Lifshitz black holes

2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Jie Jiang ◽  
Ming Zhang

AbstractIn this paper, based on the new version of the gedanken experiments proposed by Sorce and Wald, we examine the weak cosmic censorship in the perturbation process of accreting matter fields for the charged dilaton-Lifshitz black holes. In the investigation, we assume that the black hole is perturbed by some extra matter source satisfied the null energy condition and ultimately settle down to a static charged dilaton-Lifshitz black hole in the asymptotic future. Then, after applying the Noether charge method, we derive the first-order and second-order perturbation inequalities of the perturbation matter fields. As a result, we find that the nearly extremal charged dilaton-Lifshitz black hole cannot be destroyed under the second-order approximation of perturbation. This result implies that the weak cosmic censorship conjecture might be a general feature of the Einstein gravity, and it is independent of the asymptotic behaviors of the black holes.

2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Ming Zhang ◽  
Jie Jiang

AbstractViewing the negative cosmological constant as a dynamical quantity derived from the matter field, we study the weak cosmic censorship conjecture for the higher-dimensional asymptotically AdS Reissner–Nordström black hole. To this end, using the stability assumption of the matter field perturbation and the null energy condition of the matter field, we first derive the first-order and second-order perturbation inequalities containing the variable cosmological constant and its conjugate quantity for the black hole. We prove that the higher-dimensional RN-AdS black hole cannot be destroyed under a second-order approximation of the matter field perturbation process.


Author(s):  
Run-Qiu Yang ◽  
Rong-Gen Cai ◽  
Li Li

Abstract We show that the number of horizons of static black holes can be strongly constrained by energy conditions of matter fields. After a careful clarification on the ``interior'' of a black hole, we prove that if the interior of a static black hole satisfies strong energy condition or null energy condition, there is at most one non-degenerated inner Killing horizon behind the non-degenerated event horizon. Our result offers some universal restrictions on the number of horizons. Interestingly and importantly, it also suggests that matter not only promotes the formation of event horizon but also prevents the appearance of multiple horizons inside black holes. Furthermore, using the geometrical construction, we obtain a radially conserved quantity which is valid for general static spacetimes.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Aofei Sang ◽  
Jie Jiang

Abstract Sorce and Wald proposed a new version of gedanken experiments to examine the weak cosmic censorship conjecture (WCCC) in Kerr-Newmann black holes. However, their discussion only includes the second-order approximation of perturbation and there exists an optimal condition such that the validity of the WCCC is determined by the higher-order approximations. Therefore, in this paper, we extended their discussions into the high-order approximations to study the WCCC in a nearly extremal Kerr black hole. After assuming that the spacetime satisfies the stability condition and the perturbation matter fields satisfy the null energy condition, based on the Noether charge method by Iyer and Wald, we completely calculate the first four order perturbation inequalities and discuss the corresponding gedanken experiment to overspin the Kerr black hole. As a result, we find that the nearly extremal Kerr black holes cannot be destroyed under the fourth-order approximation of perturbation. Then, by using the mathematical induction, we strictly prove the nth order perturbation inequality when the first (n − 1) order perturbation inequalities are saturated. Using these results, we discuss the first 100 order approximation of the gedanken experiments and find that the WCCC in Kerr black hole is valid under the higher-order approximation of perturbation. Our investigation implies that the WCCC might be strictly satisfied in Kerr black holes under the perturbation level.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Xin-Yang Wang ◽  
Jie Jiang

AbstractThe singularity at the center of charged Bañados–Teitelboim–Zanelli (BTZ) black holes is called a conical singularity. Unlike the canonical singularity in typical black holes, a conical singularity does not destroy the causality of spacetime. Due to the special property of the conical singularity, we examine the weak cosmic censorship conjecture (WCCC) using the new version of the gedanken experiment proposed by Sorce and Wald. A perturbation process wherein the spherically symmetric matter fields pass through the event horizon and fall into the black holes is considered. Assuming that the cosmological constant is obtained by the matter fields, it therefore can be seen as a dynamical variable during the process. From this perspective, according to the stability condition and the null energy condition, the first- and second-order perturbation inequalities are derived. Based on the first-order optimal condition and the second-order perturbation inequality, we show that the nearly extremal charged BTZ black hole cannot be destroyed in the above perturbation process. The result also implies that even if the singularity at the center of the black hole is conical, it still should be surrounded by the event horizon and hidden inside the black hole.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Krishan Saraswat ◽  
Niayesh Afshordi

Abstract We study how the evaporation rate of spherically symmetric black holes is affected through the extraction of radiation close to the horizon. We adopt a model of extraction that involves a perfectly absorptive screen placed close to the horizon and show that the evaporation rate can be changed depending on how close to the horizon the screen is placed. We apply our results to show that the scrambling time defined by the Hayden-Preskill decoding criterion, which is derived in Pennington’s work (arXiv:1905.08255) through entanglement wedge reconstruction is modified. The modifications appear as logarithmic corrections to Pennington’s time scale which depend on where the absorptive screen is placed. By fixing the proper distance between the horizon and screen we show that for small AdS black holes the leading order term in the scrambling time is consistent with Pennington’s scrambling time. However, for large AdS black holes the leading order Log contains the Bekenstein-Hawking entropy of a cell of characteristic length equal to the AdS radius rather than the entropy of the full horizon. Furthermore, using the correspondence between the radial null energy condition (NEC) and the holographic c-theorem, we argue that the screen cannot be arbitrarily close to the horizon. This leads to a holographic argument that black hole mining using a screen cannot significantly alter the lifetime of a black hole.


2013 ◽  
Vol 91 (1) ◽  
pp. 64-70 ◽  
Author(s):  
J. Sadeghi ◽  
A. Banijamali ◽  
E. Reisi

In this paper, using the Hamilton–Jacobi method we first calculate the Hawking temperature for a Horava–Lifshitz black hole. Then by utilizing the radial null geodesic method we obtain the entropy of such a black hole in four-dimensional space–time. We also consider the effect of back reaction on the surface gravity and compute modifications of entropy and Hawking temperature because of such an effect. Our calculations are for two kinds of Horava–Lifshitz black holes: Kehagias–Sfetsos and Lu–Mei–Pope.


2014 ◽  
Vol 92 (1) ◽  
pp. 76-81 ◽  
Author(s):  
S.H. Hendi ◽  
B. Eslam Panah ◽  
C. Corda

We consider a class of spherically symmetric space–time to obtain some interesting solutions in F(R) gravity without matter field (pure gravity). We investigate the geometry of the solutions and find that there is an essential singularity at the origin. In addition, we show that there is an analogy between obtained solutions with the black holes of Einstein-Λ-power Maxwell invariant theory. Furthermore, we find that these solutions are equivalent to the asymptotically Lifshitz black holes. Also, we calculate d2F/dR2 to examine the Dolgov–Kawasaki stability criterion.


Author(s):  
Vaibhav Wasnik

In this work we construct metrics corresponding to radiating black holes whose near horizon regions cannot be approximated by Rindler space–time. We first construct infinite parameter coordinate transformations from Minkowski coordinates, such that an observer using these coordinates to describe space–time events measures the Minkowski vacuum to be Planckian. Utilizing these results, we construct a family of black holes that radiate at spatial infinity. As an illustration, we study a subset of the black hole solutions and show that they satisfy the null energy condition.


2014 ◽  
Vol 29 (34) ◽  
pp. 1450187
Author(s):  
Samuel Lepe ◽  
Bruno Merello

The Hawking radiation considered as a tunneling process, by using a Hamilton–Jacobi prescription, is discussed for both z = 3 and z = 1-Lifshitz black holes. We have found that the tunneling rate (which is not thermal but related to the change of entropy) for the z = 3-Lifshitz black hole (which does not satisfy the Area/4-law) does not yield (give us) the expected tunneling rate: Γ~ exp (ΔS), where ΔS is the change of black hole entropy, if we compare with the z = 1-Lifshitz black hole (BTZ black hole, which satisfies the Area/4-law).


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
M. A. Anacleto ◽  
D. Bazeia ◽  
F. A. Brito ◽  
J. C. Mota-Silva

We focus on the Hamilton-Jacobi method to determine several thermodynamic quantities such as temperature, entropy, and specific heat of two-dimensional Horava-Lifshitz black holes by using the generalized uncertainty principles (GUP). We also address the product of horizons, mainly concerning the event, Cauchy, and cosmological and virtual horizons.


Sign in / Sign up

Export Citation Format

Share Document