extended theories of gravity
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 14)

H-INDEX

15
(FIVE YEARS 4)

Author(s):  
Sourav Roy Chowdhury ◽  
Maxim Khlopov

Extended theories of gravity are considered as a new approach for solving the infrared and ultraviolet scale problems; the standard theory of gravity (general relativity) and observational evidence of gravitational waves and subsequent identification of the number of existing polarizations are an effective tool for testing general relativity and extended theories of gravity. The Newman–Penrose method is used to characterize the polarization modes for specific forms of [Formula: see text] in the present study. Both the forms of the [Formula: see text] theory belong to far more general variational class of gravitational waves, capable of presenting up to six separate polarizations states. We have introduced a new [Formula: see text] gravity model as an attempt to have a theory with more parametric regulations so that the model can be used to describe existing issues and discover different directions in gravity physics. The primary goal of this research is to look into the properties of gravitational waves with new cases. The model shows the existence of scalar degrees of freedom in [Formula: see text] gravity metric notation.


2021 ◽  
Vol 136 (3) ◽  
Author(s):  
S. Capozziello ◽  
G. Lambiase ◽  
A. Stabile ◽  
An. Stabile

AbstractWe study the frequency shift of photons generated by rotating gravitational sources in the framework of curvature-based Extended Theories of Gravity. The discussion is developed considering the weak-field approximation. Following a perturbative approach, we analyze the process of exchanging photons between Earth and a given satellite, and we find a general relation to constrain the free parameters of gravitational theories. Finally, we suggest the Moon as a possible laboratory to test theories of gravity by future experiments which can be, in principle, based also on other Solar System bodies.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Victor A. S. V. Bittencourt ◽  
Massimo Blasone ◽  
Fabrizio Illuminati ◽  
Gaetano Lambiase ◽  
Giuseppe Gaetano Luciano ◽  
...  

Universe ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 38
Author(s):  
Hermano Velten ◽  
Thiago R. P. Caramês

Apart from the familiar structure firmly-rooted in the general relativistic field equations where the energy–momentum tensor has a null divergence i.e., it conserves, there exists a considerable number of extended theories of gravity allowing departures from the usual conservative framework. Many of these theories became popular in the last few years, aiming to describe the phenomenology behind dark matter and dark energy. However, within these scenarios, it is common to see attempts to preserve the conservative property of the energy–momentum tensor. Most of the time, it is done by means of some additional constraint that ensures the validity of the standard conservation law, as long as this option is available in the theory. However, if no such extra constraint is available, the theory will inevitably carry a non-trivial conservation law as part of its structure. In this work, we review some of such proposals discussing the theoretical construction leading to the non-conservation of the energy–momentum tensor.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Vittorio De Falco ◽  
Emmanuele Battista ◽  
Salvatore Capozziello ◽  
Mariafelicia De Laurentis

AbstractStatic and spherically symmetric wormhole solutions can be reconstructed in the framework of curvature based Extended Theories of Gravity. In particular, extensions of the General Relativity, in metric and curvature formalism give rise to modified gravitational potentials, constituted by the classical Newtonian potential and Yukawa-like corrections, whose parameters can be, in turn, gauged by the observations. Such an approach allows to reconstruct the spacetime out of the wormhole throat considering the asymptotic flatness as a physical property for the related gravitational field. Such an argument can be applied for a large class of curvature theories characterising the wormholes through the parameters of the potentials. According to this procedure, possible wormhole solutions could be observationally constrained. On the other hand, stable and traversable wormholes could be a direct probe for this class of Extended Theories of Gravity.


Author(s):  
Luca Buoninfante ◽  
Gaetano Lambiase ◽  
Antonio Stabile

Abstract We propose a high precision satellite experiment to further test Einstein’s General Relativity and constrain extended theories of gravity. We consider the frequency shift of a photon radially exchanged between two observers located on Earth and on a satellite in circular orbit in the equatorial plane. In General Relativity there exists a peculiar satellite-distance at which the static contribution to the frequency shift vanishes since the effects induced by pure gravity and special relativity compensate, while it can be non-zero in modified gravities, like in models with screening mechanisms. As an experimental device placed on the satellite we choose a system of hydrogen atoms which can exhibit the 1 s spin-flip transition from the singlet (unaligned proton-electron spins) to the triplet (aligned proton-electron spins) state induced by the absorption of photons at 21.1 cm. The observation of an excited state would indicate that the frequency of the emitted and absorbed photon remains unchanged according to General Relativity. On the contrary, a non-zero frequency shift, as predicted in extended theories of gravity, would prevent the spin-flip transition and the hydrogen atoms from jumping into the excited state. Such a detection would signify a smoking-gun signature of new physics beyond special and general relativity.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040060
Author(s):  
Vjacheslav Prokopov ◽  
Stanislav Alexeyev

We focus on the consequences of that the Event Horizon Telescope obtained images of the black hole shadow in the center of the M87 galaxy. We show that to test extended theories of gravity the improving of the resolution by 3 orders is necessary. In addition it is demonstrated that the rotation distorts the shape of the shadow and corrections from the extended gravity may affect on this distortion.


2020 ◽  
Vol 101 (2) ◽  
Author(s):  
Luca Buoninfante ◽  
Giuseppe Gaetano Luciano ◽  
Luciano Petruzziello ◽  
Luca Smaldone

Sign in / Sign up

Export Citation Format

Share Document