olive waste
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 26)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Vol 82 ◽  
Author(s):  
H. Kahraman ◽  
C. C. Karaderi

Abstract In this study, we investigated the proline and protease production of different bacteria in several organic waste materials. Our aim was to produce proline and protease economically in waste that is abundantly available while reducing its environmental impact. 5 ml of different organic waste materials (OWW: Olive waste water; N.B: Nutrient Broth; EW: Eggshell; PBS: PBS buffer; PLW: Peach leaf wastes; TCW: Turkish coffee wastes; TWW: Tea waste water; WCW: Waste cheese whey; WFO: Waste frying oil) were placed in 10 ml grow tubes, inoculated and incubated for 24 h. Phosphate-buffered saline and 10% solutions of different organic wastes were added. These cultures were subsequently incubated at 37°C for 24 h. Cells were harvested at 24 h for L-proline assay. 1 ml of culture was transferred by pipette into an Eppendorf tube and centrifuged at 14,000 rpm for 20 min at room temperature. Cellular debris was removed by centrifuge and the supernatant was used for proline activity assays. Protease activity was determined using a modified method with casein as the substrate. We found that proline and protease can easily be produced economically using Turkish coffee wastes (TCW), Waste cheese whey (WCW) and Olive waste water (OWW) organic waste. We believe that this study will result in similar research leading to the economical use of these waste materials thus reducing their impact on the environment.


2022 ◽  
Vol 1212 (1) ◽  
pp. 012032
Author(s):  
M A Dahim ◽  
M Abuaddous ◽  
H Al-Mattarneh ◽  
A E Alluqmani ◽  
R Ismail

Abstract Recycle and reuse of agriculture and industrial wastes becomes a big chalenge in different parts of the world. The success in the waste recycle could lead to conserve the environment, reduce the use of cement, and improve health environment. This paper presents the potential use of fly ash from olive oil waste in Jordan to improve concrete material which could be used as a sustainable material for rigid pavement and building construction material. Olive oil ash was collected from olive oil mill and replace cement in producing concrete material. The range of cement replacement was 0% to 12.5% with increment 2.5%. The results indicate that olive oil reduces the workability of concrete material. The reduction of the slump of concrete increases with increasing olive ash content. Strength and durability of concrete improved and increased with increasing olive ash content in concrete up to 7.5 percent then the strength reduced. The results in this study show that the use of 7.5% was the optimum replacement of cement. This percent could produce concrete with higher strength and higher durability in comparison with the control concrete mix. Olive waste ash enhances both strength and durability because it reduces the effective water-cement ratio in concrete mix and filling the pore and void structure in concrete material. The benefits of this study could reduce the cost of concrete and recycle waste material and enhance concrete properties.


Author(s):  
Muhammad Haris ◽  
Muhammad Waqas Khan ◽  
Jorge Paz-Ferreiro ◽  
Nasir Mahmood ◽  
Nicky Eshtiaghi

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7654
Author(s):  
Md. Alhaz Uddin ◽  
Sk. Yasir Arafat Siddiki ◽  
Shams Forruque Ahmed ◽  
Zahidul Islam Rony ◽  
M. A. K. Chowdhury ◽  
...  

The disposal of olive wastes and their wastewater is a major problem worldwide. An important recycling chain can be formed through biogas production and energy conversion from olive waste. This study developed an efficient and effective sustainable model for biogas production using anaerobic digestion conditions with the co-digestion of pretreated olive waste. The sample used was hard olive pomace, which was dried in an oven before being crushed to fine particles with a mortar and pestle. The sample was analyzed by a CE-440 Elemental Analyzer, and Fourier Transform Infrared Spectrophotometer (FTIR) analysis was performed using Shimadzu IRTracer-100. Through the analysis, a substantial amount of electrical energy of 769 kWh/t was found to be generated per ton of olive pomace due to the high volatile solid (VS) percentage of organic waste material incorporated during the calculation. Reduced land area for landfilling olive waste was calculated to be 108 m2 per year, whereas the potential to reduce landfill leachate production was evaluated to be 0.32 m3 per year.


Fuel ◽  
2021 ◽  
Vol 295 ◽  
pp. 120631
Author(s):  
M. Puig-Gamero ◽  
J.R. Trapero ◽  
D.J. Pedregal ◽  
P. Sánchez ◽  
L. Sanchez-Silva

2021 ◽  
Vol 6 (3) ◽  
pp. 44-46
Author(s):  
Holta Prifti ◽  
Tania Floqi

Biogas production technology not only constitutes a biofuel source, but also can be a mitigation measure for the various environmental pollutants. This technology, i.e., anaerobic digestion is a biological process that takes place naturally when microorganisms break down organic matter in the absence of oxygen. In an enclosed chamber, controlled anaerobic digestion of organic matter produces biogas which is predominantly methane. The produced methane then can be directly used; or after certain conditioning, can be used in onsite power generation, heating homes or as vehicular fuel. Besides, organic waste is increasingly becoming a major problem in every society imposing serious economic and environmental concerns. For this reason, many contemporary researches are emphasizing in finding sustainable solutions to recycle and produce energy from such waste. In this context, this paper aims to investigate the potential of cow and chicken manure, and olive waste for biogas production obtained through the anaerobic digestion process. The substrates were placed in laboratory scale digesters without pretreatment. The retention time in the digesters was 30 days. The samples of the tested substrates were collected and analyzed for pH, total solids, ash, and the content of volatile solids (VS). Under mesophilic conditions, all combinations of cow and chicken manure, and olive waste with sludge by an anaerobic pond of a trickling filter treatment plant, as co-substrate, significantly improved biogas, and methane yields. The experimental results showed that chicken manure (CM) is the most suitable for anaerobic digestion (AD). The next step of the study will consist in implementing a large scale of biogas production plants and we will estimate the national potential of green energy produced by this technology and map the areas that need digesters.


2021 ◽  
Vol 13 (5) ◽  
pp. 2588 ◽  
Author(s):  
Mechthild Donner ◽  
Ivana Radić

Considering the large amounts of harmful waste produced in the Mediterranean olive sector, entrepreneurial initiatives creating value from olive waste and by-products via circular bio-economy approaches are reviewed. These circular business models aim to enhance the functionality use of olive trees beyond traditional patterns for value creation. The study focuses on business drivers and value creation mechanisms, and specifically on conversion pathways of olive waste towards new value propositions. In total, 41 cases are analyzed mainly according to the Business Model Canvas components with NVivo, based on data gathered from an extensive online search mainly of company websites and reports, online articles, research project reports, professional websites, and newsletters. Results indicate that some innovative businesses have emerged specializing in the domain of olive waste valorization, driven by environmental concerns and mainly focusing on bioenergy production. However, the overall olive biomass potential yet seems to be under-valorized. A more radical and systemic change will be needed for effective implementation of circular business models contributing to sustainable development in the Mediterranean olive sector, with adequate subsidies, common regulations, more collective actions for creating economies of scale, and marketing strategies to increase consumer awareness for bio-based products.


2020 ◽  
Vol 42 ◽  
pp. 101292
Author(s):  
Redouane Melouki ◽  
Amina Ouadah ◽  
Philip L. Llewellyn

Sign in / Sign up

Export Citation Format

Share Document