cacopsylla pruni
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Nicolas Sauvion ◽  
Jean Peccoud ◽  
Christine Meynard ◽  
David Ouvrard

Cacopsylla pruni is a psyllid that has been known since 1998 as the vector of the bacterium ‘Candidatus Phytoplasma prunorum’, responsible for the European stone fruit yellows (ESFY), a disease that affects species of Prunus. This disease is one of the major limiting factors for the production of stone fruits, most notably apricot (Prunus armeniaca) and Japanese plum (P. salicina), in all EU stone fruit-growing areas. The psyllid vector is widespread in the Western Palearctic and evidence for the presence of the phytoplasma that it transmits to species of Prunus has been found in 15 of the 27 EU countries. Recent studies showed that C. pruni is actually composed of two cryptic species that can be differentiated by molecular markers. A literature review on the distribution of C. pruni was published in 2012, but it only provided presence or absence information at the country level and without distinction between the two cryptic species. Since 2012, numerous new records of the vector in several European countries have been published. We ourselves have acquired a large amount of data from sampling in France and other European countries. We have also carried out a thorough systematic literature review to find additional records, including all the original sources mentioning C. pruni (or its synonyms) since the first description by Scopoli in 1763. Our aim was to create an exhaustive georeferenced occurrence catalogue, in particular in countries that are occasionally mentioned in literature with little detail. Finally, for countries that seem suitable for the proliferation of C. pruni (USA, Canada, Japan, China etc.), we dug deeper into literature and reliable sources (e.g. published checklists) to better substantiate its current absence from those regions. Information on the distribution ranges of these vector psyllids is of crucial interest in order to best predict the vulnerability of stone fruit producing countries to the ESFY threat in the foreseeable future. We give free access to a unique file of 1975 records of all occurrence data in our possession concerning C. pruni, that we have gathered through more than twenty years of sampling efforts in Europe or through intensive text mining. We have made every effort to retrieve the source information for the records extracted from literature (1201 records). Thus, we always give the title of the original reference, together with the page(s) citing C. pruni and, if possible, the year of sampling. To make the results of this survey publicly available, we give a URL to access the literature sources. In most cases, this link allows free downloads of a PDF file. We also give access to information extracted from GBIF (162 exploitable data points on 245 occurrences found in the database), which we thoroughly checked and often supplemented to make the information more easily exploitable. We give access to our own unpublished georeferenced and genotyped records from 612 samples taken over the last 20 years in several European countries (Switzerland, Belgium, Netherlands, Spain etc.). These include two countries (Portugal and North Macedonia), for which the presence of C. pruni had not been reported before. As our specimens have been genotyped (74 sites with species A solely, 202 with species B solely and 310 with species A+B), our new data enable a better overview of the geographical distribution of the two cryptic species at the Palaearctic scale.


2021 ◽  
Author(s):  
Nicolas Sauvion ◽  
Jean Peccoud ◽  
Christine Meynard ◽  
David Ouvrard

Cacopsylla pruni is a psyllid that has been known since 1998 as the vector of the bacterium ‘Candidatus Phytoplasma prunorum’, responsible for the European stone fruit yellows (ESFY), a disease that affects species of Prunus. This disease is one of the major limiting factors for the production of stone fruits, most notably apricot (Prunus armeniaca) and Japanese plum (P. salicina), in all EU stone fruit-growing areas. The psyllid vector is widespread in the Western Palearctic, and evidence for the presence of the phytoplasma that it transmits to species of Prunus has been found in 15 of the 27 EU countries. Recent studies showed that C. pruni is actually composed of two cryptic species, which can be differentiated by molecular markers. A literature review on the distribution of C. pruni was published in 2012, but it only provided presence or absence information at the country level and without distinction between the two cryptic species. Since 2012, numerous new records of the vector in several European countries have been published. We ourselves have acquired a large amount of data from sampling in France and other European countries. We have also carried out a thorough systematic literature review to find additional records, including all the original sources mentioning C. pruni (or its synonyms) since the first description by Scopoli in 1763. Our aim was to create an exhaustive georeferenced occurrence catalog, in particular in countries that are occasionnaly mentioned in the literature with little detail. Finally, for countries that seem suitable for the proliferation of C. pruni (USA, Canada, Japan, China, etc.), we digged deeper into the literature and reliable sources (e.g. checklist) to better subtanciate its current absence from those regions. Information on the distribution ranges of these vector psyllids is of crucial interest in order to best predict the vulnerability of stone fruit producing countries to the ESFY threat in the foreseeable future. We give free access to a unique file of 1975 records of all occurrence data in our possession concerning C. pruni, which we have gathered through more than twenty years of sampling efforts in Europe or through intensive text mining. We have made every effort to retrieve the source information for the records extracted from litterature (1201 records). Thus, we always give the title of the original reference, together with the page(s) citing C. pruni and, if possible, the year of sampling. To make the results of this survey publicly available, we give a URL to access the literature sources. In most cases, this link allows to freely download a PDF file. We also give access to information extracted from GBIF (162 exploitable data points on 245 occurrences found in the database), which we thoroughly checked and often supplemented to make the information more easily exploitable. We give access to our own unpublished georeferenced and genotyped record from 612 samples taken over the last 20 years in several European countries (Switzerland, Belgium, Netherlands, Spain, etc.). These include two countries (Portugal and North Macedonia) for which the presence of C. pruni had not been reported before. As our specimens have been genotyped (74 sites with species A solely, 202 with species B solely, and 310 with species A+B), our new data enable a better view of the geographical distribution of the two species at the Palaearctic scale.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1168 ◽  
Author(s):  
Dana Barthel ◽  
Christine Kerschbamer ◽  
Bernd Panassiti ◽  
Igor Malenovský ◽  
Katrin Janik

The psyllids Cacopsylla melanoneura and Cacopsylla picta reproduce on apple (Malus × domestica) and transmit the bacterium ‘Candidatus Phytoplasma mali’, the causative agent of apple proliferation. Adult psyllids were collected by the beating-tray method from lower and upper parts of the apple tree canopy in the morning and in the afternoon. There was a trend of catching more emigrant adults of C.melanoneura in the morning and in the lower part of the canopy. For C.melanoneura remigrants, no differences were observed. The findings regarding the distribution of adults were reflected by the number of nymphs collected by wash-down sampling. The density of C.picta was too low for a statistical analysis. The vector monitoring and how it is commonly performed, is suitable for estimating densities of C.melanoneura. Nevertheless, above a certain temperature threshold, prediction of C.melanoneura density might be skewed. No evidence was found that other relatively abundant psyllid species in the orchard, viz. Baeopelma colorata, Cacopsylla breviantennata, Cacopsylla brunneipennis, Cacopsylla pruni and Trioza urticae, were involved in ‘Candidatus Phytoplasma mali’ transmission. The results of our study contribute to an advanced understanding of insect vector behavior and thus have a practical impact for an improved field monitoring.


2019 ◽  
pp. 45-48
Author(s):  
Dominika Bodnár ◽  
Brigitta Szalai ◽  
Gábor Tarcali ◽  
Orsolya Viczián ◽  
Emese Mergenthaler

European Stone Fruit Yellows (ESFY) phytoplasma disease causes an increasing amount of damage. This is especially true to the Gönci growing region. The insect vector of the disease, which has been shown to have a vector role during transmission experiments, is the plum psyllid (Cacopsylla pruni). In 2018, during the swarming period of plum psyllid, in 3 different settlements (Boldogkőváralja, Nagyvárad and Bekecs) 265 psyllidswere collected, from which 165 were plum psyllid. Molecular biology studies showed 106 individuals infected with phytoplasma, of which 20 were males and 86 were females.


2019 ◽  
Author(s):  
Véronique Marie-Jeanne ◽  
François Bonnot ◽  
Gaël Thébaud ◽  
Jean Peccoud ◽  
Gérard Labonne ◽  
...  

ABSTRACTInferring the dispersal processes of vector-borne plant pathogens is a great challenge because the plausible epidemiological scenarios often involve complex spread patterns at multiple scales. European stone fruit yellows (ESFY), a disease caused by ‘Candidatus Phytoplasma prunorum’ and disseminated via planting material and vectors belonging to the species Cacopsylla pruni, is a major threat for stone fruit production throughout Europe. The spatial genetic structure of the pathogen was investigated at multiple scales by the application of a combination of statistical approaches to a large dataset obtained through the intensive sampling of the three ecological compartments hosting the pathogen (psyllids, wild and cultivated Prunus) in three Prunus-growing regions in France. This work revealed new haplotypes of ‘Ca. P. prunorum’, and showed that the prevalence of the different haplotypes of this pathogen is highly uneven between all regions, and within two of them. In addition, we identified a significant clustering of similar haplotypes within a radius of at most 50 km, but not between nearby wild and cultivated Prunus. We also provide evidence that the two species of the C. pruni complex are unevenly distributed but can spread the pathogen, and that infected plants are transferred between production areas. Altogether, this work supports a main epidemiological scenario where ‘Ca. P. prunorum’ is endemic in, and mostly acquired from, wild Prunus by immature C. pruni (of both species) who then migrate to “shelter plants” that epidemiologically connect sites less than 50 km apart by later providing infectious mature C. pruni to their “migration basins”, which differ in their haplotypic composition. We argue that such multiscale studies would be very useful for other pathosystems.


2019 ◽  
Vol 8 (2) ◽  
pp. 63-67
Author(s):  
Aneliya Etropolska ◽  
François Lefort

In recent years, ‘Ca. P. prunorum’, the agent of ESFY was reported from several apricot orchards of Canton of Wallis, the main apricot production region in Switzerland (Genini and Ramel, 2004). The psyllid vector Cacopsylla pruni was also found in several locations in the Lake Geneva area (Ackermann et al., 2006). The presence of the disease and of its proven vector C. pruni at the eastern part of the Lake Geneva area, as well as the existing risk of dissemination of ESFY to other stone fruit orchards along the Lake Geneva are the reasons for which ESFY needs to be studied further. ESFY and its possible dissemination through C. pruni on the territory of Canton of Geneva, bordering France, has never been yet studied. In 2016, visual observations were conducted in several stone fruit orchards near Geneva. Plant material was obtained from peach trees, displaying some of the typical symptoms such premature leaf colouration, leaf-roll, tree decline (Sabaté et al., 2015), in the autumn, when the concentration of the phytoplasma in the upper parts of the trees is the highest. Phloem was prepared from branches and was extracted with a CTAB-based adapted protocol (Lefort and Douglas, 1999). PCR amplification of phytoplasma DNA was achieved with the universal primers: fP1/rP7 (Deng and Hiruki, 1991; Schneider et al., 1995). All positive samples were tested with the ESFY-specific non-ribosomal primers ECA1/ECA2 (Jarausch et al., 1998). Typical symptoms of ESFY, like premature leaf colouration, leaf yellowing with reddish edges,  leaf-roll, severe chlorosis, die-back of top branches and partial or, complete decline of the trees (Figure 1) were found in a peach orchard (GPS coordinates: 46°15'17.4"N 6°12'40.7"E) located in the area of Collonge-Bellerive, close to Geneva city. Ten trees were sampled in this orchard. The presence of ‘Ca. P. prunorum’ was confirmed in two of them (Figure 2 and Figure 3). At the beginning of spring 2017, the monitoring of the ESFY symptoms in the infested orchard was resumed. Early bud break was found on the two infected trees and the infection was confirmed again by PCR (Figure 4 and Figure 5). The same symptoms were observed in many trees of this orchard, which correlated with the previous autumn observations. Trapping confirmed the presence of the insect vector Cacopsylla pruni (Bodnár et al., 2018) in the infected area. In order to understand more about the origin and the diversity of ESFY phytoplasma in this area, additional plant and insect samples will be analyzed. The correlation between symptoms and infected plants will be studied further. We report here for the first time on the occurrence of ‘Candidatus Phytoplasma prunorum’ (‘Ca. P. prunorum’) the agent of ESFY on the territory of Canton of Geneva.


2019 ◽  
pp. 5-11
Author(s):  
Dominika Bodnár ◽  
Emese Mergenthaler ◽  
Orsolya Viczián ◽  
Gábor Tarcali

European Stone Fruit Yellows(ESFY) phytoplasma disease on apricot was identified by molecular methods for the first time in 1992 in Hungary. Currently, the pathogen is known as’ Ca. Phytoplasma prunorum’. Since, the pathogen become wide-spreaded and manyof the apricot-plantations had to be eliminated. In 2009 and 2010 in the countryside of Boldogkőváralja the infection of the apricot-plantations was about 77%. As the disease spreading and causing large damages, we studied the roleo fpossible vector,the plum psyllid (Cacopsylla pruni Scopoli) in the areas of Boldogkőváralja, North-East-Hungary. Studies were done in the year of 2016, monitoring the behaviour of the psyllids in four different areas, and caught 41 them for further examination. We collected plant samples from those apricot trees, on which the plum psyllids were caught.


Sign in / Sign up

Export Citation Format

Share Document