reach angle
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

2020 ◽  
Vol 9 (7) ◽  
pp. 457
Author(s):  
Aspasia Litoseliti ◽  
Ioannis K. Koukouvelas ◽  
Konstantinos G. Nikolakopoulos ◽  
Vasiliki Zygouri

Assessment of landslide hazard across mountains is imperative for public safety. Pre- and post-earthquake landslide mapping envisage that landslides show significant size changes during earthquake activity. One of the purposes of earthquake-induced landslide investigation is to determine the landslide state and geometry and draw conclusions on their mobility. This study was based on remote sensing data that covered 72 years, and focused on the west slopes of the Skolis Mountains, in the northwest Peloponnese. On 8 June 2008, during the strong Movri Mountain earthquake (Mw = 6.4), we mapped the extremely abundant landslide occurrence. Historical seismicity and remote sensing data indicate that the Skolis Mountain west slope is repeatedly affected by landslides. The impact of the earthquakes was based on the estimation of Arias intensity in the study area. We recognized that 89 landslides developed over the last 72 years. These landslides increased their width (W), called herein as inflation or their length (L), termed as enlargement. Length and width changes were used to describe their aspect ratio (L/W). Based on the aspect ratio, the 89 landslides were classified into three types: I, J, and Δ. Taluses, developed at the base of the slope and belonging to the J- and Δ-landslide types, are supplied by narrow or irregular channels. During the earthquakes, the landslide channels migrated upward and downward, outlining the mobility of the earthquake-induced landslides. Landslide mobility was defined by the reach angle. The reach angle is the arctangent of the landslide’s height to length ratio. Furthermore, we analyzed the present slope stability across the Skolis Mountain by using the landslide density (LD), landslide area percentage (LAP), and landslide frequency (LF). All these parameters were used to evaluate the spatial and temporal landslide distribution and evolution with the earthquake activity. These results can be considered as a powerful tool for earthquake-induced landslide disaster mitigation



Author(s):  
Steven M. Peterson ◽  
Satpreet H. Singh ◽  
Nancy X. R. Wang ◽  
Rajesh P. N. Rao ◽  
Bingni W. Brunton

AbstractMotor behaviors are central to many functions and dysfunctions of the brain, and understanding their neural basis has consequently been a major focus in neuroscience. However, most studies of motor behaviors have been restricted to artificial, repetitive paradigms, far removed from natural movements performed “in the wild.” Here, we leveraged recent advances in machine learning and computer vision to analyze intracranial recordings from 12 human subjects during thousands of spontaneous, unstructured arm reach movements, observed over several days for each subject. These naturalistic movements elicited cortical spectral power patterns consistent with findings from controlled paradigms, but with considerable neural variability across subjects and events. We modeled inter-event variability using ten behavioral and environmental features; the most important features explaining this variability were reach angle and day of recording. Our work is among the first studies connecting behavioral and neural variability across cortex in humans during unstructured movements and contributes to our understanding of long-term naturalistic behavior.



2019 ◽  
Vol 71 ◽  
pp. 155-164 ◽  
Author(s):  
Shilpi Bora ◽  
Yogesh Bhalerao ◽  
Ankit Goyal ◽  
D. Chakrabarti ◽  
Dezhi Chen ◽  
...  
Keyword(s):  


2019 ◽  
Author(s):  
Peter Holland ◽  
Olivier Codol ◽  
Elizabeth Oxley ◽  
Madison Taylor ◽  
Elizabeth Hamshere ◽  
...  

AbstractThe addition of rewarding feedback to motor learning tasks has been shown to increase the retention of learning, spurring interest in the possible utility for rehabilitation. However, laboratory-based motor tasks employing rewarding feedback have repeatedly been shown to lead to great inter-individual variability in performance. Understanding the causes of such variability is vital for maximising the potential benefits of reward-based motor learning. Thus, using a large cohort (n=241) we examined whether spatial (SWM), verbal (VWM) and mental rotation (RWM) working memory capacity and dopamine-related genetic profiles were associated with performance in two reward-based motor tasks. The first task assessed participant’s ability to follow a hidden and slowly shifting reward region based on hit/miss (binary) feedback. The second task investigated participant’s capacity to preserve performance with binary feedback after adapting to the rotation with full visual feedback. Our results demonstrate that higher SWM is associated with greater success and a greater capacity to reproduce a successful motor action, measured as change in reach angle following reward. Whereas higher RWM was predictive of an increased propensity to express an explicit strategy when required to make large adjustments in reach angle. Therefore, both SWM and RWM were reliable predictors of success during reward-based motor learning. Change in reach direction following failure was also a strong predictor of success rate, although we observed no consistent relationship with any type of working memory. Surprisingly, no dopamine-related genotypes predicted performance. Therefore, working memory capacity plays a pivotal role in determining individual ability in reward-based motor learning.Significance statementReward-based motor learning tasks have repeatedly been shown to lead to idiosyncratic behaviours that cause varying degrees of task success. Yet, the factors determining an individual’s capacity to use reward-based feedback are unclear. Here, we assessed a wide range of possible candidate predictors, and demonstrate that domain-specific working memory plays an essential role in determining individual capacity to use reward-based feedback. Surprisingly, genetic variations in dopamine availability were not found to play a role. This is in stark contrast with seminal work in the reinforcement and decision-making literature, which show strong and replicated effects of the same dopaminergic genes in decision-making. Therefore, our results provide novel insights into reward-based motor learning, highlighting a key role for domain-specific working memory capacity.



2018 ◽  
Vol 119 (6) ◽  
pp. 2241-2255 ◽  
Author(s):  
Peter Holland ◽  
Olivier Codol ◽  
Joseph M. Galea

Despite increasing interest in the role of reward in motor learning, the underlying mechanisms remain ill defined. In particular, the contribution of explicit processes to reward-based motor learning is unclear. To address this, we examined subjects’ ( n = 30) ability to learn to compensate for a gradually introduced 25° visuomotor rotation with only reward-based feedback (binary success/failure). Only two-thirds of subjects ( n = 20) were successful at the maximum angle. The remaining subjects initially followed the rotation but after a variable number of trials began to reach at an insufficiently large angle and subsequently returned to near-baseline performance ( n = 10). Furthermore, those who were successful accomplished this via a large explicit component, evidenced by a reduction in reach angle when they were asked to remove any strategy they employed. However, both groups displayed a small degree of remaining retention even after the removal of this explicit component. All subjects made greater and more variable changes in reach angle after incorrect (unrewarded) trials. However, subjects who failed to learn showed decreased sensitivity to errors, even in the initial period in which they followed the rotation, a pattern previously found in parkinsonian patients. In a second experiment, the addition of a secondary mental rotation task completely abolished learning ( n = 10), while a control group replicated the results of the first experiment ( n = 10). These results emphasize a pivotal role of explicit processes during reinforcement-based motor learning, and the susceptibility of this form of learning to disruption has important implications for its potential therapeutic benefits. NEW & NOTEWORTHY We demonstrate that learning a visuomotor rotation with only reward-based feedback is principally accomplished via the development of a large explicit component. Furthermore, this form of learning is susceptible to disruption with a secondary task. The results suggest that future experiments utilizing reward-based feedback should aim to dissect the roles of implicit and explicit reinforcement learning systems. Therapeutic motor learning approaches based on reward should be aware of the sensitivity to disruption.



2017 ◽  
Author(s):  
Peter Holland ◽  
Olivier Codol

AbstractDespite increasing interest in the role of reward in motor learning, the underlying mechanisms remain ill-defined. In particular, the relevance of explicit strategies to reward-based motor learning is unclear. To address this, we examined subject’s (n=30) ability to learn to compensate for a gradually introduced 25° visuomotor rotation with only reward-based feedback (binary success/failure). Only two-thirds of subjects (n=20) were successful at the maximum angle. The remaining subjects initially follow the rotation but after a variable number of trials begin to reach at an insufficiently large angle and subsequently return to near baseline performance (n=10). Furthermore, those that were successful accomplished this largely via the use of strategies, evidenced by a large reduction in reach angle when asked to remove any strategy they employed. However, both groups display a small degree of remaining retention even after the removal of strategies. All subjects made greater and more variable changes in reach angle following incorrect (unrewarded) trials. However, subjects who failed to learn showed decreased sensitivity to errors, even in the initial period in which they followed the rotation, a pattern previously found in Parkinsonian patients. In a second experiment, the addition of a secondary mental rotation task completely abolished learning (n=10), whilst a control group replicated the results of the first experiment (n=10). These results emphasize a pivotal role of strategy-use during reinforcement-based motor learning and the susceptibility of this form of learning to disruption has important implications for its potential therapeutic benefits.





2011 ◽  
Vol 105 (5) ◽  
pp. 2248-2259 ◽  
Author(s):  
Scott A. Norris ◽  
Emily N. Hathaway ◽  
Jordan A. Taylor ◽  
W. Thomas Thach

Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20–30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation.



1996 ◽  
Vol 33 (2) ◽  
pp. 260-271 ◽  
Author(s):  
Jordi Corominas

The relations between the angle of reach (fahrböschung) and other indexes expressing the mobility of landslides and vertical drop, horizontal reach, and volume of landslide mass have been analyzed by means of simplified plots and regression equations. Results for 204 landslides of all sizes show that whatever the mechanism of motion, all kinds of landslides experience a continuous reduction of the angle of reach with volume increase. This reduction starts from the smallest sizes. Scattering in this relation is mostly due to mechanisms of motion and to both obstacles and topographic constraints on the path. This synthesis indicates that small landslides (less than 0.5 × 106 m3), in relative terms, display excesses of travel distance similar to large landslides. Since most small landslides are not expected to develop any change in the mechanism of progression while moving, the decrease in the reach angle with volume suggests that scale effects should be taken into account. The angle of reach is found to be a proper indicator of the relative mobility of landslides and is not dependent on the height of fall. Key words: mass wasting, landslides, reach angle, runout distance, rock avalanches, shallow landslides.



Sign in / Sign up

Export Citation Format

Share Document