cerebral microhemorrhage
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

Blood ◽  
2020 ◽  
Vol 136 (25) ◽  
pp. 2875-2880
Author(s):  
Nichola Cooper ◽  
Melanie A. Morrison ◽  
Camelia Vladescu ◽  
Alice C. J. Hart ◽  
Deena Paul ◽  
...  

Abstract Management of symptoms and prevention of life-threatening hemorrhage in immune thrombocytopenia (ITP) must be balanced against adverse effects of therapies. Because current treatment guidelines based on platelet count are confounded by variable bleeding phenotypes, there is a need to identify new objective markers of disease severity for treatment stratification. In this cross-sectional prospective study of 49 patients with ITP and nadir platelet counts <30 × 109/L and 18 aged-matched healthy controls, we used susceptibility-weighted magnetic resonance imaging to detect cerebral microbleeds (CMBs) as a marker of occult hemorrhage. CMBs were detected using a semiautomated method and correlated with clinical metadata using multivariate regression analysis. No CMBs were detected in health controls. In contrast, lobar CMBs were identified in 43% (21 of 49) of patients with ITP; prevalence increased with decreasing nadir platelet count (0/4, ≥15 × 109/L; 2/9, 10-14 × 109/L; 4/11, 5-9 × 109/L; 15/25 <5 × 109/L) and was associated with longer disease duration (P = 7 × 10−6), lower nadir platelet count (P = .005), lower platelet count at time of neuroimaging (P = .029), and higher organ bleeding scores (P = .028). Mucosal and skin bleeding scores, number of previous treatments, age, and sex were not associated with CMBs. Occult cerebral microhemorrhage is common in patients with moderate to severe ITP. Strong associations with ITP duration may reflect CMB accrual over time or more refractory disease. Further longitudinal studies in children and adults will allow greater understanding of the natural history and clinical and prognostic significance of CMBs.


2020 ◽  
Vol 29 (10) ◽  
pp. 105111 ◽  
Author(s):  
Aaron Shoskes ◽  
Ibrahim Migdady ◽  
Anthony Fernandez ◽  
Paul Ruggieri ◽  
Alexander Rae-Grant

Author(s):  
Romain Barus ◽  
Sandrine Bergeron ◽  
Florent Auger ◽  
Charlotte Laloux ◽  
Emilie Skrobala ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. 2514183X2091418
Author(s):  
Sebastian J Müller ◽  
Eya Khadhraoui ◽  
Ibrahim Allam ◽  
Loukas Argyriou ◽  
Ute Hehr ◽  
...  

Cerebral Autosomal Recessive Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CARASIL, Maeda syndrome) is an extremely rare autosomal-recessive genetic disorder with a serious arteriopathy causing subcortical infarcts and leukoencephalopathy. In less than 20 cases, a genetic mutation was proven. Patients suffer from alopecia, disc herniations, and spondylosis. Between the age of 30 and 40, the patients typically develop severe cerebral infarcts. Clinical symptoms, genetic study, magnetic resonance imaging (MRI), and coronary angiography of a patient with proven CARASIL are presented. The patient showed the typical phenotype with cerebral small-vessel disease, cerebral infarcts, spondylosis, and abnormal hair loss. Additionally, distinct cerebral microhemorrhage and a severe coronary artery disease (CAD) were found, which have not been reported before for CARASIL. Mutation screening revealed the presence of a homozygous c.1022G > T substitution in the HTRA1 gene. Evidence from other publications supports a pathogenetic link between the HTRA1 mutation and CAD as a new feature of CARASIL. This is the first report about CARASIL with a concomitant severe CAD. Thus, in patients with CARASIL, other vessel diseases should also be considered.


2017 ◽  
Vol 7 ◽  
pp. 27 ◽  
Author(s):  
Paggie P C Kim ◽  
Benjamin W Nasman ◽  
Erica L Kinne ◽  
Udochukwu E Oyoyo ◽  
Daniel K Kido ◽  
...  

Objectives: This study was undertaken to estimate the incidence and burden of cerebral microhemorrhage (CM) in patients with heart disease who underwent cardiopulmonary bypass (CPB), as detected on susceptibility-weighted imaging (SWI), a magnetic resonance (MR) sequence that is highly sensitive to hemorrhagic products. Materials and Methods: With Institutional Review Board waiver of consent, MR imaging (MRI) of a cohort of 86 consecutive pediatric patients with heart failure who underwent heart transplantation evaluation were retrospectively reviewed for CM. A nested case–control study was performed. The CPB group consisted of 23 pediatric patients with heart failure from various cardiac conditions who underwent CPB. The control group was comprised of 13 pediatric patients with similar cardiac conditions, but without CPB history. Ten patients in the CPB group were female (age: 5 days to 16 years at the time of the CPB and 6 days to 17 years at the time of the MRI). The time interval between the CPB and MRI ranged from 11 days to 4 years and 5 months. Six patients in the control group were female, age range of 2 days to 6 years old. The number of CM on SWI was counted by three radiologists (PK, EK and DK). The differences in number of CM between groups were tested for significance using Mann–Whitney U-test, α = 0.05. Using the univariate analysis of variance model, the differences in number of CM between groups were also tested with adjustment for age at MRI. Results: There are statistically significant differences in CM on SWI between the CPB group and control group with more CM were observed in the CPB group without and with adjustment for age at MRI (P < 0.001). Conclusions: Exposure of CPB is associated with increased prevalence and burden of CM among pediatric patients with heart failure.


Sign in / Sign up

Export Citation Format

Share Document