anterior semicircular canal
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 8)

H-INDEX

16
(FIVE YEARS 1)

2022 ◽  
Vol 12 ◽  
Author(s):  
Weixing Liu ◽  
Gui Chen ◽  
Junyang Xie ◽  
Tianhao Liang ◽  
Chunyi Zhang ◽  
...  

Objectives: To develop and evaluate a new coordinate system for MRI of the vestibular system.Methods: In this study, 53 internal auditory canal MRI and 78 temporal bone CT datasets were analyzed. Mimics Medical software version 21.0 was used to visualize and three-dimensionally reconstruct the image data. We established a new coordinate system, named W–X, based on the center of the bilateral eyeballs and vertex of the bilateral superior semicircular canals. Using the W–X coordinate system and Reid's coordinate system, we measured the orientations of the planes of the anterior semicircular canal (ASCC), the lateral semicircular canal (LSCC), and the posterior semicircular canal (PSCC).Results: No significant differences between the angles measured using CT and MRI were found for any of the semicircular canal planes (p > 0.05). No statistical differences were found between the angles measured using Reid's coordinate system (CT) and the W–X coordinate system (MRI). The mean values of ∠ASCC & LSCC, ∠ASCC & PSCC, and ∠LSCC & PSCC were 84.67 ± 5.76, 94.21 ± 3.81, and 91.79 ± 5.22 degrees, respectively. The angle between the LSCC plane and the horizontal imaging plane was 15.64 ± 3.92 degrees, and the angle between the PSCC plane and the sagittal imaging plane was 48.79 ± 4.46 degrees.Conclusion: A new W–X coordinate system was developed for MRI studies of the vestibular system and can be used to measure the orientations of the semicircular canals.





Author(s):  
Jozef Klembara ◽  
Marcello Ruta ◽  
Miroslav Hain ◽  
David S. Berman

The braincase anatomy of the Pennsylvanian diadectomorph Limnoscelis dynatis is described in detail, based upon high-resolution X-ray microcomputed tomography. Both supraoccipitals and most of the prootics and opisthotics are preserved. The known portions of the left prootic, opisthotic, and supraoccipital enclose complete sections of the endosseous labyrinth, including the anterior, posterior, and lateral semicircular canals, the vestibule, the cochlear recess, and the canal for the endolymphatic duct. The fossa subarcuata is visible anteromedial to the anterior semicircular canal. The presumed endolymphatic fossae occur in the dorsal wall of the posteromedial portion of the supraoccipital. Both the fossa subarcuata and the fossa endolymphatica lie in the cerebellar portion of the cranial cavity. In order to investigate the phylogenetic position of L. dynatis we used a recently published data matrix, including characters of the braincase, and subjected it to maximum parsimony analyses under a variety of character weighting schemes and to a Bayesian analysis. Limnoscelis dynatis emerges as sister taxon to L. paludis, and both species form the sister group to remaining diadectomorphs. Synapsids and diadectomorphs are resolved as sister clades in ∼90% of all the most parsimonious trees from the unweighted analysis, in the single trees from both the reweighted and the implied weights analyses, as well in the Bayesian tree.



2021 ◽  
pp. 464-469
Author(s):  
Dominik Péus ◽  
Dominik Straumann ◽  
Alexander Huber ◽  
Christopher J. Bockisch ◽  
Vincent Wettstein

Downbeat nystagmus (DBN) observed in head-hanging positions, may be of central or peripheral origin. Central DBN in head-hanging positions is mostly due to a disorder of the vestibulo-cerebellum, whereas peripheral DBN is usually attributed to canalolithiasis of an anterior semicircular canal. Here, we describe an atypical case of a patient who, after head trauma, experienced severe and stereotypic vertigo attacks after being placed in various head-hanging positions. Vertigo lasted 10–15 s and was always associated with a robust DBN. The provocation of transient vertigo and DBN, which both showed no decrease upon repetition of maneuvers, depended on the yaw orientation relative to the trunk and the angle of backward pitch. On a motorized, multi-axis turntable, we identified the two-dimensional Helmholtz coordinates of head positions at which vertigo and DBN occurred (<i>y</i>-axis: horizontal, space-fixed; <i>z</i>-axis: vertical, and head-fixed; <i>x</i>-axis: torsional, head-fixed, and unchanged). This two-dimensional area of DBN-associated head positions did not change when whole-body rotations took different paths (e.g., by forwarding pitch) or were executed with different velocities. Moreover, the intensity of DBN was also independent of whole-body rotation paths and velocities. So far, therapeutic approaches with repeated liberation maneuvers and cranial vibrations were not successful. We speculate that vertigo and DBN in this patient are due to macular damage, possibly an unstable otolithic membrane that, in specific orientations relative to gravity, slips into a position causing paroxysmal stimulation or inhibition of macular hair cells.





Author(s):  
Ajay Kumar Vats ◽  
Sudhir Kothari ◽  
Anirban Biswas

AbstractIn any patient with a history of rotational vertigo triggered by changes in the position of head relative to the gravity, whose oculomotor patterns elicit a positional downbeating nystagmus (p-DBN), the localization could be either central in the brainstem, midline cerebellum, or at the craniocerebral junction; or else peripheral due to one of the rare variants of benign paroxysmal positional vertigo of vertical semicircular canals. Most serious causes of central vertigo in patients with p-DBN can be diagnosed by magnetic resonance imaging of the posterior fossa and craniovertebral junction. However, the peripheral p-DBN could be either due to anterior semicircular canal benign paroxysmal positional vertigo (ASC-BPPV) or a recently described apogeotropic variant of posterior semicircular canal BPPV (apo-PSC-BPPV) and the two are almost impossible to differentiate initially. The usual clinical scenario in apo-PSC-BPPV is diagnosing it initially as ASC-BPPV. However, following diagnostic or therapeutic positioning maneuvers for the purported ASC-BPPV, the positional oculomotor pattern changes to an upbeating nystagmus with the reversal in the direction of the torsion as well, localizing it to the contralateral PSC with respect to the ASC initially diagnosed. The initial oculomotor pattern observed on the right Dix–Hallpike test in this patient, of a short latency downbeating left torsional (from the patient’s perspective) positional nystagmus suggested a diagnosis of left ASC-BPPV, which was accordingly treated with multiple sessions of reverse Epley maneuvers daily for a week. At the end of the week, a verifying right Dix–Hallpike test elicited an upbeating right torsional (from the patient’s perspective) positional nystagmus. It is extremely unlikely that this patient had resolution of her initial left ASC-BPPV with the daily sessions of reverse Epley maneuvers carried over a week and immediately suffered from commoner geotropic variant of the right PSC-BPPV (geo-PSC-BPPV). It is plausible to interpret that this patient suffered from the right apo-PSC-BPPV from the very outset, and the reverse Epley maneuver performed for the ostensive left ASC-BPPV led to an intracanal shift of otoconial debris from its nonampullary to the ampullary arm resulting in right geo-PSC-BPPV. The reasons why situations like this outwit the clinician resulting in inaccurate localization as well as lateralization is discussed. The patient was successfully treated with right Epley maneuver after transformation to geo-PSC-BPPV and was asymptomatic at follow-up for 4 weeks. A peripheral p-DBN with torsional component in any patient with a history of positionally triggered vertigo can be either ASC-BPPV or apo-PSC-BPPV. A very close follow-up at a short interval of time with meticulously executed positional tests is the only definitive way to differentiate the two conditions.



2020 ◽  
pp. 014556131989798
Author(s):  
Gabriela C. Musat ◽  
Andreea A. M. Musat

We present the case of a 31-year-old woman with isolated symptomatology accusing positional vertigo. The videonystagmography (VNG) including Dix-Hallpike testing we have performed, highlighted atypical eye movements. We have observed a positional downbeating nystagmus with characteristics that could be accounted for anterior semicircular canal benign paroxysmal positional vertigo. Furthermore, examining the atypical nystagmus at the measurements performed during VNG recordings, we suspicioned a central positional vertigo. The abnormalities observed at the positional nystagmus were the lack of latency period, the downbeating component not limited in time, and the atypical torsional component. The magnetic resonance imaging examination recommended showed multiple white matter lesions characteristic for multiple sclerosis. The patient was referred to the neurology department for further evaluation and treatment. The diagnosis was unexpected because the patient did not have any other symptom that could have been linked to multiple sclerosis.



Author(s):  
Ariana Paulina-Carabajal ◽  
Leonardo Filippi ◽  
Fabien Knoll

this taxon has uncertain phylogenetic relationships within the clade. An X-ray Computed Tomography (CT) scan of the holotypebraincase allowed the first reconstruction of the brain and inner ear of this taxon, making it possible to compare the neuroanatomy with thatof closely related forms. Except for the slightly sigmodal shape of the endocast in lateral view—considered a basal condition—, the brainshows derived titanosaurian traits such as a poorly developed dorsal expansion and a single exit for Cranial Nerve (CN) XII. In contrast, the innerear exhibits slender and long semicircular canals (the anterior semicircular canal is distinctly longer than the posterior semicircular canal), whichis a character present in more basal representatives of the group, such as Sarmientosaurus. We consider, however, the morphology of theinner ear as an unreliable indicator of phylogenetic position. Furthermore, there is a remarkable similarity between the morphology of theendocast of Narambuenatitanand the possible saltasaurid from (FAM 03.064), from the Upper Cretaceous of Fox-Amphoux-Métisson, France,suggesting saltasaurine affinities for the Argentinean taxon.



2018 ◽  
Vol 128 (2) ◽  
pp. 113-120 ◽  
Author(s):  
Keishi Fujiwara ◽  
Hiroko Yanagi ◽  
Shinya Morita ◽  
Kimiko Hoshino ◽  
Atsushi Fukuda ◽  
...  

Objectives: The aim of this study was to investigate vertical semicircular canal function in patients with vestibular schwannoma (VS) by video head impulse test (vHIT). Methods: Fifteen patients with VS who had not received any treatment, including surgery or stereotactic radiotherapy, before vHIT examination were enrolled. Vestibulo-ocular reflex gain and catch-up saccade in vHIT were evaluated. Results: Dysfunction of anterior and posterior semicircular canals was detected by vHIT in 26.7% and 60.0%, respectively. Six patients (40.0%) demonstrated abnormalities referable to both vestibular nerve divisions. Abnormalities referable to the superior vestibular nerve were identified in 3 patients (20.0%), while 3 patients (20.0%) demonstrated a pattern indicative of inferior vestibular nerve involvement. Anterior semicircular canal vHIT produced fewer abnormalities than did either horizontal or posterior semicircular canal vHIT. Conclusions: Dysfunction of the semicircular canals, including the vertical canals, in patients with VS was detected by vHIT. The anterior semicircular canal was less frequently involved than the horizontal or posterior semicircular canal. The examination of the vertical canals by vHIT is useful in the evaluation of vestibular function in patients with VS.





Sign in / Sign up

Export Citation Format

Share Document