Efficient Arbitrary Polarized Light Focusing by Silicon Cross-Shaped Metaatoms

Author(s):  
Fatemeh Bazouband ◽  
Elaheh Bazouband ◽  
Tahereh Golestanizadeh ◽  
Amirhossein Jabbar Sadooni ◽  
Maryam Mousavi Fard ◽  
...  

Abstract Functionalities of most of the metasurfaces that are investigated so far, especially in illuminations with arbitrarily linearly polarized incident light, are restricted to x- or y-polarized incoming light. In particular, filtering out one of the two orthogonal polarizations of the incoming electromagnetic wave loses the incident light energy and limits the potential performance of the metasurface. In this study, by utilizing the cross-shaped silicon metaatoms that support the simultaneous excitation of electric and magnetic dipoles under the illumination of both x- and y- orthogonal polarizations, we overcome the polarization-restricted functionality of the metalenses. By selecting the metaatoms arrangement in the metalens structure, which follows the hyperbolic phase profiles for both x- and y-polarized incoming light waves at the same time, we obtain the light intensity distribution with the extended depth of focus or enhanced intensities at the focal spot with the focusing efficiency 65% for the numerical aperture of 0.7. Utilizing metaatoms with the ability to control the two orthogonal incoming polarizations develops a new methodology for using the full potential and intensity of the arbitrary polarized incoming light. The present design concept of metaatoms has several advantages that are not limited to metalenses alone but can be applied in all metasurfaces realized to have good efficiency. Finally, the proposed metalenses are suitable for imaging, optical tweezer and lithography applications, where subwavelength light intensity distributions with extended depth of focus are the most desirable property.

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Elyas Bayati ◽  
Raphaël Pestourie ◽  
Shane Colburn ◽  
Zin Lin ◽  
Steven G. Johnson ◽  
...  

Abstract We report an inverse-designed, high numerical aperture (∼0.44), extended depth of focus (EDOF) meta-optic, which exhibits a lens-like point spread function (PSF). The EDOF meta-optic maintains a focusing efficiency comparable to that of a hyperboloid metalens throughout its depth of focus. Exploiting the extended depth of focus and computational post processing, we demonstrate broadband imaging across the full visible spectrum using a 1 mm, f/1 meta-optic. Unlike other canonical EDOF meta-optics, characterized by phase masks such as a log-asphere or cubic function, our design exhibits a highly invariant PSF across ∼290 nm optical bandwidth, which leads to significantly improved image quality, as quantified by structural similarity metrics.


Author(s):  
W.S. Putnam ◽  
C. Viney

Many sheared liquid crystalline materials (fibers, films and moldings) exhibit a fine banded microstructure when observed in the polarized light microscope. In some cases, for example Kevlar® fiber, the periodicity is close to the resolution limit of even the highest numerical aperture objectives. The periodic microstructure reflects a non-uniform alignment of the constituent molecules, and consequently is an indication that the mechanical properties will be less than optimal. Thus it is necessary to obtain quality micrographs for characterization, which in turn requires that fine detail should contribute significantly to image formation.It is textbook knowledge that the resolution achievable with a given microscope objective (numerical aperture NA) and a given wavelength of light (λ) increases as the angle of incidence of light at the specimen surface is increased. Stated in terms of the Abbe resolution criterion, resolution improves from λ/NA to λ/2NA with increasing departure from normal incidence.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yueyang Zhong ◽  
Kai Wang ◽  
Xiaoning Yu ◽  
Xin Liu ◽  
Ke Yao

AbstractThis meta-analysis aimed to evaluate the clinical outcomes following implantation of trifocal intraocular lenses (IOLs) or a hybrid multifocal-extended depth of focus (EDOF) IOL in cataract or refractive lens exchange surgeries. We examined 13 comparative studies with bilateral implantation of trifocal (898 eyes) or hybrid multifocal-EDOF (624 eyes) IOLs published through 1 March 2020. Better uncorrected and corrected near visual acuity (VA) were observed in the trifocal group (MD: − 0.143, 95% CI: − 0.192 to − 0.010, P < 0.001 and MD: − 0.149, 95% CI: − 0.217 to − 0.082, P < 0.001, respectively), while the hybrid multifocal-EDOF group presented better uncorrected intermediate VA (MD: 0.055, 95% CI: 0.016 to 0.093, P = 0.005). Trifocal IOLs were more likely to achieve spectacle independence at near distance (RR: 1.103, 95% CI: 1.036 to 1.152, P = 0.002). The halo photic effect was generated more frequently by the trifocal IOLs (RR: 1.318, 95% CI: 1.025 to 1.696, P = 0.031). Contrast sensitivity and subjective visual quality yielded comparable results between groups. Trifocal IOLs demonstrated better performance at near distance but apparently led to more photic disturbances. Our findings provided the most up-to-date and comprehensive evidence by comparing the benefits of advanced IOLs in clinical practice.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuying Yang ◽  
Zhiyan Chen ◽  
Xiangqian Lu ◽  
Xiaotao Hao ◽  
Wei Qin

AbstractThe organic magnetoelectric complexes are beneficial for the development on flexible magnetoelectric devices in the future. In this work, we fabricated all organic multiferroic ferromagnetic/ferroelectric complexes to study magnetoelectric coupling at room temperature. Under the stimulus of external magnetic field, the localization of charge inside organic ferromagnets will be enhanced to affect spin–dipole interaction at organic multiferroic interfaces, where overall ferroelectric polarization is tuned to present an organic magnetoelectric coupling. Moreover, the magnetoelectric coupling of the organic ferromagnetic/ferroelectric complex is tightly dependent on incident light intensity. Decreasing light intensity, the dominated interfacial interaction will switch from spin–dipole to dipole–dipole interaction, which leads to the magnetoelectric coefficient changing from positive to negative in organic multiferroic magnetoelectric complexes.


2021 ◽  
Author(s):  
Xiaoluo Bao ◽  
Xiaokun Wang ◽  
Xiangqing Li ◽  
Lixia Qin ◽  
Taiyang Zhang ◽  
...  

It is necessary for the commercialization of sunlight-driven H2 evolution to develop an efficient photocatalytic system whose energy utilization is independent on incident light intensity. Unfortunately, limited attention has been...


Author(s):  
Makoto Inoue ◽  
Nina Teresa Aicher ◽  
Yuji Itoh ◽  
Hiroko Bissen-Miyajima ◽  
Akito Hirakata

2020 ◽  
Vol 126 (9) ◽  
Author(s):  
Joachim Jelken ◽  
Carsten Henkel ◽  
Svetlana Santer

Abstract We study the peculiar response of photo-sensitive polymer films irradiated with a certain type of interference pattern where one interfering beam is S-polarized, while the second one is P-polarized. The polymer film, although in a glassy state, deforms following the local polarization distribution of the incident light, and a surface relief grating (SRG) appears whose period is half the optical one. All other types of interference patterns result in the matching of both periods. The topographical response is triggered by the alignment of photo-responsive azobenzene containing polymer side chains orthogonal to the local electrical field, resulting in a bulk birefringence grating (BBG). We investigate the process of dual grating formation (SRG and BBG) in a polymer film utilizing a dedicated set-up that combines probe beam diffraction and atomic force microscopy (AFM) measurements, and permits acquiring in situ and in real-time information about changes in local topography and birefringence. We find that the SRG maxima appear at the positions of linearly polarized light (tilted by 45° relative to the grating vector), causing the formation of the half-period topography. This permits to inscribe symmetric and asymmetric topography gratings with sub-wavelength period, while changing only slightly the polarization of one of the interfering beams. We demonstrate an easy generation of sawtooth profiles (blazed gratings) with adjustable shape. With these results, we have taken a significant step in understanding the photo-induced deformation of azo-polymer films.


2005 ◽  
Author(s):  
Sandro Förster ◽  
Herbert Gross ◽  
Frank Höller ◽  
Lutz Höring

Sign in / Sign up

Export Citation Format

Share Document