oxygen consumption calorimetry
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 0)

Fire ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Oleg M. Melnik ◽  
Stephen A. Paskaluk ◽  
Mark Y. Ackerman ◽  
Katharine O. Melnik ◽  
Dan K. Thompson ◽  
...  

Improving the accuracy of fire behavior prediction requires better understanding of live fuel, the dominant component of tree crowns, which dictates the consumption and energy release of the crown fire flame-front. Live fuel flammability is not well represented by existing evaluation methods. High-flammability live fuel, e.g., in conifers, may maintain or increase the energy release of the advancing crown fire flame-front, while low-flammability live fuel, e.g., in boreal deciduous stands, may reduce or eventually suppress flame-front energy release. To better characterize these fuel–flame-front interactions, we propose a method for quantifying flammability as the fuel’s net effect on (contribution to) the frontal flame energy release, in which the frontal flame is simulated using a methane diffusion flame. The fuel’s energy release contribution to the methane flame was measured using oxygen consumption calorimetry as the difference in energy release between the methane flame interacting with live fuel and the methane flame alone. In-flame testing resulted in fuel ignition and consumption comparable to those in wildfires. The energy release contribution of live fuel was significantly lower than its energy content measured using standard methods, suggesting better sensitivity of the proposed metric to water content- and oxygen deficiency-associated energy release reductions within the combustion zone.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Andrew J. Kurzawski ◽  
Ofodike A. Ezekoye

Abstract In fire hazard calculations, knowledge of the heat-release rate (HRR) of a burning item is imperative. Typically, room-scale calorimetry is conducted to determine the HRRs of common combustible items. However, this process can be prohibitively expensive. In this work, a method is proposed to invert for the HRR of a single item burning in a room using transient heat flux measurements at the walls and ceiling near the item. The primary device used to measure heat flux is the directional flame thermometer (DFT). The utility of the inverse method is explored on both synthetically generated and experimental data using two so-called forward models in the inversion algorithm: fire dynamics simulator (FDS) and the consolidated model of fire and smoke transport (CFAST). The fires in this work have peak HRRs ranging from 200 kW to 400 kW. It was found that FDS outperformed CFAST as a forward model at the expense of increased computational cost and that the error in the inverse reconstruction of a 400 kW steady fire was on par with room-scale oxygen consumption calorimetry.


Author(s):  
Jiann C. Yang

The derivations of the formulas for heat release rate calculations are revisited based on the oxygen consumption principle. A systematic, structured, and pedagogical approach to formulate the problem and derive the generalized formulas with fewer assumptions is used. The operation of oxygen consumption calorimetry is treated as a chemical flow process, the problem is formulated in matrix notation, and the associated material balances using the tie component concept commonly used in chemical engineering practices are solved. The derivation procedure described is intuitive and easy to follow. Inclusion of other chemical species in the measurements and calculations can be easily implemented using the generalized framework developed here.


2017 ◽  
Vol 6 (1) ◽  
Author(s):  
C. Beyler ◽  
P. Croce ◽  
C. Dubay ◽  
P. Johnson ◽  
M. McNamee

2014 ◽  
Vol 117 (1) ◽  
pp. 325-332 ◽  
Author(s):  
Jozef Martinka ◽  
Tomáš Chrebet ◽  
Karol Balog

Sign in / Sign up

Export Citation Format

Share Document