oriental armyworm
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 34)

H-INDEX

14
(FIVE YEARS 2)

Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 559
Author(s):  
Hao Li ◽  
Fang-Fang Liu ◽  
Li-Qing Fu ◽  
Ze Liu ◽  
Wen-Ting Zhang ◽  
...  

Insect C-type lectins (CTLs) play vital roles in modulating humoral and cellular immune responses. The oriental armyworm, Mythimna separata (Walker) (Lepidoptera: Noctuidae) is a migratory pest that causes significant economic loss in agriculture. CTLs have not yet been systematically identified in M. separata. In this study, we first constructed a transcriptome of M. separata larvae, generating a total of 45,888 unigenes with an average length of 910 bp. Unigenes were functionally annotated in six databases: NR, GO, KEGG, Pfam, eggNOG, and Swiss-Prot. Unigenes were enriched in functional pathways, such as those of signal transduction, endocrine system, cellular community, and immune system. Thirty-five unigenes encoding C-type lectins were identified, including CTL-S1~CTL-S6 (single CRD) and IML-1~IML-29 (dual CRD). Phylogenetic analyses showed dramatic lineage-specific expansions of IMLs. Sequence alignment and structural modeling identified potential ligand-interacting residues. Real-time qPCR revealed that CTL-Ss mainly express in eggs and early stage larvae, while IMLs mainly express in mid-late-stage larvae, pupae, and adults. In naïve larvae, hemocytes, fat body, and epidermis are the major tissues that express CTLs. In larvae challenged by Escherichia coli, Staphylococcus aureus, or Beauveria bassiana, the expression of different CTLs was stimulated in hemocytes, fat body and midgut. The present study will help further explore functions of M. separata CTLs.


2021 ◽  
Vol 20 (5) ◽  
pp. 1336-1345
Author(s):  
Meng-meng YAN ◽  
Lei ZHANG ◽  
Yun-xia CHENG ◽  
Thomas W. SAPPINGTON ◽  
Wei-dong PAN ◽  
...  

Author(s):  
Peirong Li ◽  
Xinru Li ◽  
Wei Wang ◽  
Xiaoling Tan ◽  
Xiaoqi Wang ◽  
...  

Abstract The oriental armyworm, Mythimna separata (Walker) is a serious pest of agriculture that does particular damage to Gramineae crops in Asia, Europe, and Oceania. Metamorphosis is a key developmental stage in insects, although the genes underlying the metamorphic transition in M. separata remain largely unknown. Here, we sequenced the transcriptomes of five stages; mature larvae (ML), wandering (W), and pupation (1, 5, and 10 days after pupation, designated P1, P5, and P10) to identify transition-associated genes. Four libraries were generated, with 22,884, 23,534, 26,643, and 33,238 differentially expressed genes (DEGs) for the ML-vs-W, W-vs-P1, P1-vs-P5, and P5-vs-P10, respectively. Gene ontology enrichment analysis of DEGs showed that genes regulating the biosynthesis of the membrane and integral components of the membrane, which includes the cuticular protein (CP), 20-hydroxyecdysone (20E), and juvenile hormone (JH) biosynthesis, were enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that DEGs were enriched in the metabolic pathways. Of these DEGs, thirty CP, seventeen 20E, and seven JH genes were differentially expressed across the developmental stages. For transcriptome validation, ten CP, 20E, and JH-related genes were selected and verified by real-time PCR quantitative. Collectively, our results provided a basis for further studies of the molecular mechanism of metamorphosis in M. separata.


2021 ◽  
Vol 116 ◽  
pp. 103962
Author(s):  
Fang-Fang Liu ◽  
Chen Ding ◽  
Li-Ling Yang ◽  
Hao Li ◽  
Xiang-Jun Rao

Sign in / Sign up

Export Citation Format

Share Document