Transcriptional identification of differentially expressed genes during the prepupal–pupal transition in the oriental armyworm, Mythimna separata (Walker) (Lepidoptera: Noctuidae)

Author(s):  
Peirong Li ◽  
Xinru Li ◽  
Wei Wang ◽  
Xiaoling Tan ◽  
Xiaoqi Wang ◽  
...  

Abstract The oriental armyworm, Mythimna separata (Walker) is a serious pest of agriculture that does particular damage to Gramineae crops in Asia, Europe, and Oceania. Metamorphosis is a key developmental stage in insects, although the genes underlying the metamorphic transition in M. separata remain largely unknown. Here, we sequenced the transcriptomes of five stages; mature larvae (ML), wandering (W), and pupation (1, 5, and 10 days after pupation, designated P1, P5, and P10) to identify transition-associated genes. Four libraries were generated, with 22,884, 23,534, 26,643, and 33,238 differentially expressed genes (DEGs) for the ML-vs-W, W-vs-P1, P1-vs-P5, and P5-vs-P10, respectively. Gene ontology enrichment analysis of DEGs showed that genes regulating the biosynthesis of the membrane and integral components of the membrane, which includes the cuticular protein (CP), 20-hydroxyecdysone (20E), and juvenile hormone (JH) biosynthesis, were enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that DEGs were enriched in the metabolic pathways. Of these DEGs, thirty CP, seventeen 20E, and seven JH genes were differentially expressed across the developmental stages. For transcriptome validation, ten CP, 20E, and JH-related genes were selected and verified by real-time PCR quantitative. Collectively, our results provided a basis for further studies of the molecular mechanism of metamorphosis in M. separata.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11203
Author(s):  
Dingyu Chen ◽  
Chao Li ◽  
Yan Zhao ◽  
Jianjiang Zhou ◽  
Qinrong Wang ◽  
...  

Aim Helicobacter pylori cytotoxin-associated protein A (CagA) is an important virulence factor known to induce gastric cancer development. However, the cause and the underlying molecular events of CagA induction remain unclear. Here, we applied integrated bioinformatics to identify the key genes involved in the process of CagA-induced gastric epithelial cell inflammation and can ceration to comprehend the potential molecular mechanisms involved. Materials and Methods AGS cells were transected with pcDNA3.1 and pcDNA3.1::CagA for 24 h. The transfected cells were subjected to transcriptome sequencing to obtain the expressed genes. Differentially expressed genes (DEG) with adjusted P value < 0.05, — logFC —> 2 were screened, and the R package was applied for gene ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The differential gene protein–protein interaction (PPI) network was constructed using the STRING Cytoscape application, which conducted visual analysis to create the key function networks and identify the key genes. Next, the Kaplan–Meier plotter survival analysis tool was employed to analyze the survival of the key genes derived from the PPI network. Further analysis of the key gene expressions in gastric cancer and normal tissues were performed based on The Cancer Genome Atlas (TCGA) database and RT-qPCR verification. Results After transfection of AGS cells, the cell morphology changes in a hummingbird shape and causes the level of CagA phosphorylation to increase. Transcriptomics identified 6882 DEG, of which 4052 were upregulated and 2830 were downregulated, among which q-value < 0.05, FC > 2, and FC under the condition of ≤2. Accordingly, 1062 DEG were screened, of which 594 were upregulated and 468 were downregulated. The DEG participated in a total of 151 biological processes, 56 cell components, and 40 molecular functions. The KEGG pathway analysis revealed that the DEG were involved in 21 pathways. The PPI network analysis revealed three highly interconnected clusters. In addition, 30 DEG with the highest degree were analyzed in the TCGA database. As a result, 12 DEG were found to be highly expressed in gastric cancer, while seven DEG were related to the poor prognosis of gastric cancer. RT-qPCR verification results showed that Helicobacter pylori CagA caused up-regulation of BPTF, caspase3, CDH1, CTNNB1, and POLR2A expression. Conclusion The current comprehensive analysis provides new insights for exploring the effect of CagA in human gastric cancer, which could help us understand the molecular mechanism underlying the occurrence and development of gastric cancer caused by Helicobacter pylori.


2020 ◽  
Author(s):  
Kainan Lin ◽  
Zhenyan Pan ◽  
Renke He ◽  
Hanchu Wang ◽  
Kai Zhou ◽  
...  

Abstract Purpose: Endometriosis was a common gynecological disease, however, the specific mechanism and the key molecules of endometriosis remained uncertain. This study aimed to single out key genes associated with poor prognosis, and further uncover underlying mechanisms.Methods: Data regarding mRNA expression profiles used in this study were retrieved from the Gene Expression Omnibus (GEO) database, a total of three mRNA expression profiles were included for subsequent analysis (GSE31515, GSE58178 and GSE120103). Then, we conducted Gene Ontology analysis (GO analysis), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and protein-protein interaction (PPI) analysis by the software R.Results: A total of 304 differentially expressed genes (DEGs) between endometriosis tissues and normal endometrium tissues were identified in integrated analysis, including 185 up-regulated genes and 119 down-regulated genes. GO analysis reveals that the DEGs of endometriosis were closely associated with molecular origin of bacteria. KEGG pathway enrichment analysis indicates that the DEGs were mainly involved in AGE-RAGE signaling pathway in diabetic complications. In addition, PPI of these DEGs was visualized by Cytoscape platform with utilization of Search Tool for the Retrieval of Interacting Genes (STRING). PPI analysis identifies 10 potential DEGs-related protein targets, including CCND1, IL6, CCL2, COL1A2, PTGS2, VCAM1, COL3A1, ELN, SERPINE1, HSP90B1. Conclusion: In conclusion, the present study reveals that bacterial contamination, defect of female reproductive system development, retrograde menstruation and the AGE-RAGE signaling pathway may be involved in the development of endometriosis In addition, these identified DEGs may be of clinical significance for the diagnosis and treatment of the endometriosis.


Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 514 ◽  
Author(s):  
Zhen-Guang Wang ◽  
Li-Li Guo ◽  
Xiao-Ru Ji ◽  
Yi-He Yu ◽  
Guo-Hai Zhang ◽  
...  

Previous study has demonstrated that the riboflavin treatment promoted the early ripening of the ‘Kyoho’ grape berry. However, the molecular mechanism causing this was unclear. In order to reveal the regulation mechanism of riboflavin treatment on grape berry development and ripening, the different berry developmental stages of the ‘Kyoho’ berry treated with 0.5 mmol/L of riboflavin was sampled for transcriptome profiling. RNA-seq revealed that 1526 and 430 genes were up-regulated and down-regulated, respectively, for the comparisons of the treatment to the control. TCseq analysis showed that the expression patterns of most of the genes were similar between the treatment and the control, except for some genes that were related to the chlorophyll metabolism, photosynthesis–antenna proteins, and photosynthesis, which were revealed by the enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The differentially expressed genes and weighted gene co-expression network analysis (WGCNA) analysis identified some significantly differentially expressed genes and some hub genes, including up-regulation of the photosynthesis-related ELIP1 and growth and development-related GDSL; and down-regulation of the oxidative stress-related ATHSP22 and berry softening-related XTH32 and GH9B15. The results suggested that the riboflavin treatment resulted in the variations of the expression levels of these genes, and then led to the early ripening of the ‘Kyoho’ berry.


1970 ◽  
Vol 2 (2) ◽  
Author(s):  
Wenbin Xu ◽  
Weiying Zheng ◽  
Hong Xia ◽  
Lin Hua

Objective In order to improve the accuracy in distinguishing subtypes of bladder cancer and to explore its potential therapeutic targets, we identify differences between two kinds of bladder cancer subtypes (basal-like and luminal) in molecular mechanism and molecular characteristics based on the bioinformatics analysis. Methods In this study, the RMA (robust multichip averaging) was applied to normalize the mRNA profile which included 22 samples from basal-like subtype and 132 from luminal subtype, and the differential expression analysis of genes with top 1000 highest standard deviation was performed. Then, the Gene Ontology and KEGG pathway enrichment analysis of differentially expressed genes was performed. In addition, the protein-protein interactions networks analysis for the top 100 most significant differentially expressed genes was performed. Results A total of 742 differentially expressed genes distinguishing basal-like and luminal subtypes were found, of which 405 were up-regulated and 337 genes were down-regulated in basal-like subtype. GO enrichment analysis showed that differentially expressed genes were significantly enriched in the extracellular matrix, chemotaxis and inflammatory response. KEGG pathway enrichment analysis showed that the differentially expressed genes were significantly enriched in the pathway of extracellular matrix receptor interaction. The hub proteins we founded in protein-protein interaction networks were LNX1, MSN and PPARG. Conclusion In this study, the mainly difference of molecular mechanism between basal-like and luminal subtypes are alteration in extracellular matrix region, cell chemotaxis and inflammatory response. Genes such as LNX1, MSN and PPARG were forecast to play important roles in the classification of bladder carcinoma subtypes.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4448 ◽  
Author(s):  
Dingxuan He ◽  
Pin Guo ◽  
Paul F. Gugger ◽  
Youhao Guo ◽  
Xing Liu ◽  
...  

Many plant species exhibit different leaf morphologies within a single plant, or heterophylly. The molecular mechanisms regulating this phenomenon, however, have remained elusive. In this study, the transcriptomes of submerged and floating leaves of an aquatic heterophyllous plant, Potamogeton octandrus Poir, at different stages of development, were sequenced using high-throughput sequencing (RNA-Seq), in order to aid gene discovery and functional studies of genes involved in heterophylly. A total of 81,103 unigenes were identified in submerged and floating leaves and 6,822 differentially expressed genes (DEGs) were identified by comparing samples at differing time points of development. KEGG pathway enrichment analysis categorized these unigenes into 128 pathways. A total of 24,025 differentially expressed genes were involved in carbon metabolic pathways, biosynthesis of amino acids, ribosomal processes, and plant-pathogen interactions. In particular, KEGG pathway enrichment analysis categorized a total of 70 DEGs into plant hormone signal transduction pathways. The high-throughput transcriptomic results presented here highlight the potential for understanding the molecular mechanisms underlying heterophylly, which is still poorly understood. Further, these data provide a framework to better understand heterophyllous leaf development in P. octandrus via targeted studies utilizing gene cloning and functional analyses.


2020 ◽  
Author(s):  
Peirong Li ◽  
Xinru Li ◽  
Wei Wang ◽  
Xiaoling Tan ◽  
Xiaoqi Wang ◽  
...  

Abstract Background Metamorphosis ensures the transformation of a larva of the holometabolous insects into a reproductive adult through a transitory pupal stage. Understanding how changes in expression levels of genes during the prepupal-pupal transition will inform us of how the metamorphosis arises. Results In this study, mature larvae (ML), wandering (W), 1 day (P1), 5 days (P5), and 10 days (P10) after pupation of the Mythimna separata (Walker), a notorious migratory pest of agricultural crops, were selected, forming five groups. RNA-Seq revealed that the draft transcriptome assembly contained 140562 contigs, and more than half (74,059) were similar to sequence at NCBI (e value < e− 3), including 22884, 23534, 26643, and 33238 differentially expressed genes (DEGs) in ML vs W, W vs P1, P1 vs P5, and P5-vs-P10, respectively. Comparative transcriptomics revealed the enrichment of biological processes related to the membrane and integral component of membrane, which includes the cuticular protein (CP), 20-hydroxyecdysone (20E), and juvenile hormone (JH) biosynthesis, enabled us to delineate and partially validate the metabolic pathway in M. separata. Of these DEGs, 33 CP, 18 20E, and 7 JH genes were differentially expressed across the developmental stages. Correlation analysis uncovered that the relative expression levels of 10 selected CP, 20E, and JH-related genes obtained by real-time PCR quantitative (RT-qPCR) matched well with their FPKM values derived from RNA-seq. Conclusions The data gave here represent an important first step to uncover the molecular mechanism of metamorphosis in M. separata, which also provide valuable information for manipulation of insect development and metamorphosis using the obtained DEGs as targets and broaden the applications of available tools for insect pest control.


2021 ◽  
Author(s):  
Fucai Tang ◽  
Xiayan Qian ◽  
Zeguang Lu ◽  
Yongchang Lai ◽  
Zhibiao Li ◽  
...  

Abstract Background Bladder cancer (BC) is one of the most common malignant cancer of urinary system in the worldwide. The purpose of the present study was to analysis differentially expressed genes (DEGs), biological pathways and prognostic significance BC by bioinformatics analysis. Methods The gene expression dataset GSE7476 and the mRNA Seq sequencing data were downloaded respectively from GEO and TCGA. A total of 220 DEGs were obtained in BC. GO analysis and KEGG pathway analysis were performed for up- and down-regulated DEGs. Then, a protein-protein interaction (PPI) networks and module were constructed by Cytoscape software. Survival analysis of hub genes was performed. Results The result of GO analysis revealed that the up-regulated DEGs were enriched mainly in sister chromatid segregation, while the down-regulated DEGs were enriched mainly in muscle contraction. The result of KEGG pathway analysis showed that up-regulated DEGs were enriched mainly in cell cycle, while down-regulated DEGs enriched in IL-17 signaling pathway. 41 hub gene and 3 crucial modules were identified in the PPI network. 15 genes significantly associated with patient prognosis in BC were obtained by Kaplan-Meier analysis. Conclusions In summary, the present study identified hub genes, crucial pathways and provide possible the molecular targets and prognostic biomarkers for targeted therapy and prognostic assessment of BC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Yuan ◽  
Shenqiang Hu ◽  
Liang Li ◽  
Chunchun Han ◽  
Hehe Liu ◽  
...  

Abstract Background Despite their important functions and nearly ubiquitous presence in cells, an understanding of the biology of intracellular lipid droplets (LDs) in goose follicle development remains limited. An integrated study of lipidomic and transcriptomic analyses was performed in a cellular model of stearoyl-CoA desaturase (SCD) function, to determine the effects of intracellular LDs on follicle development in geese. Results Numerous internalized LDs, which were generally spherical in shape, were dispersed throughout the cytoplasm of granulosa cells (GCs), as determined using confocal microscopy analysis, with altered SCD expression affecting LD content. GC lipidomic profiling showed that the majority of the differentially abundant lipid classes were glycerophospholipids, including PA, PC, PE, PG, PI, and PS, and glycerolipids, including DG and TG, which enriched glycerophospholipid, sphingolipid, and glycerolipid metabolisms. Furthermore, transcriptomics identified differentially expressed genes (DEGs), some of which were assigned to lipid-related Gene Ontology slim terms. More DEGs were assigned in the SCD-knockdown group than in the SCD-overexpression group. Integration of the significant differentially expressed genes and lipids based on pathway enrichment analysis identified potentially targetable pathways related to glycerolipid/glycerophospholipid metabolism. Conclusions This study demonstrated the importance of lipids in understanding follicle development, thus providing a potential foundation to decipher the underlying mechanisms of lipid-mediated follicle development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hangxia Jin ◽  
Xiaomin Yu ◽  
Qinghua Yang ◽  
Xujun Fu ◽  
Fengjie Yuan

AbstractPhytic acid (PA) is a major antinutrient that cannot be digested by monogastric animals, but it can decrease the bioavailability of micronutrients (e.g., Zn and Fe). Lowering the PA content of crop seeds will lead to enhanced nutritional traits. Low-PA mutant crop lines carrying more than one mutated gene (lpa) have lower PA contents than mutants with a single lpa mutant gene. However, little is known about the link between PA pathway intermediates and downstream regulatory activities following the mutation of these genes in soybean. Consequently, we performed a comparative transcriptome analysis using an advanced generation recombinant inbred line with low PA levels [2mlpa (mips1/ipk1)] and a sibling line with homozygous non-mutant alleles and normal PA contents [2MWT (MIPS1/IPK1)]. An RNA sequencing analysis of five seed developmental stages revealed 7945 differentially expressed genes (DEGs) between the 2mlpa and 2MWT seeds. Moreover, 3316 DEGs were associated with 128 metabolic and signal transduction pathways and 4980 DEGs were annotated with 345 Gene Ontology terms related to biological processes. Genes associated with PA metabolism, photosynthesis, starch and sucrose metabolism, and defense mechanisms were among the DEGs in 2mlpa. Of these genes, 36 contributed to PA metabolism, including 22 genes possibly mediating the low-PA phenotype of 2mlpa. The expression of most of the genes associated with photosynthesis (81 of 117) was down-regulated in 2mlpa at the late seed developmental stage. In contrast, the expression of three genes involved in sucrose metabolism was up-regulated at the late seed developmental stage, which might explain the high sucrose content of 2mlpa soybeans. Furthermore, 604 genes related to defense mechanisms were differentially expressed between 2mlpa and 2MWT. In this study, we detected a low PA content as well as changes to multiple metabolites in the 2mlpa mutant. These results may help elucidate the regulation of metabolic events in 2mlpa. Many genes involved in PA metabolism may contribute to the substantial decrease in the PA content and the moderate accumulation of InsP3–InsP5 in the 2mlpa mutant. The other regulated genes related to photosynthesis, starch and sucrose metabolism, and defense mechanisms may provide additional insights into the nutritional and agronomic performance of 2mlpa seeds.


Sign in / Sign up

Export Citation Format

Share Document