scholarly journals Revisiting the role of Toxoplasma gondii ERK7 in the maintenance and stability of the apical complex

2021 ◽  
Author(s):  
Dominique Soldati-Favre ◽  
Nicolas Dos Santos Pacheco ◽  
Nicolò Tosetti ◽  
Aarti Krishnan ◽  
Romuald Haase

Toxoplasma gondii ERK7 is known to contribute to the integrity of the apical complex and to be involved only in the final step of the conoid biogenesis. In the absence of ERK7, mature parasites lose their conoid complex and are unable to glide, invade or egress from host cells. In contrast to a previous report, we show here that depletion of ERK7 phenocopies the depletion of the apical cap proteins AC9 or AC10. The absence of ERK7 leads to the loss of the apical polar ring, the disorganization of the basket of subpellicular microtubules and an impairment in micronemes secretion. Ultra-expansion microscopy (U-ExM) coupled to NHS-Ester staining on intracellular parasites offers an unprecedented level of resolution and highlights the disorganization of the rhoptries as well as the dilated plasma membrane at the apical pole in the absence of ERK7. Comparative proteomics analysis of wild-type and ERK7 or AC9 depleted parasites led to the disappearance of known, predicted, as well as putative novel components of the apical complex. In contrast, the absence of ERK7 led to an accumulation of microneme proteins, resulting from the defect in exocytosis of the organelles.

mBio ◽  
2021 ◽  
Author(s):  
Nicolas Dos Santos Pacheco ◽  
Nicolò Tosetti ◽  
Aarti Krishnan ◽  
Romuald Haase ◽  
Bohumil Maco ◽  
...  

The conoid is an enigmatic, dynamic organelle positioned at the apical tip of the coccidian subgroup of the Apicomplexa, close to the apical polar ring (APR) from which the subpellicular microtubules (SPMTs) emerge and through which the secretory organelles (micronemes and rhoptries) reach the plasma membrane for exocytosis. In Toxoplasma gondii , the conoid protrudes concomitantly with microneme secretion, during egress, motility, and invasion.


1984 ◽  
Vol 70 (1) ◽  
pp. 73-81
Author(s):  
K. Tanabe ◽  
K. Murakami

The membrane potential of Toxoplasma gondii, an obligatory intracellular protozoan parasite, was monitored with the cationic permeant fluorescent dye rhodamine 123 (R123). Fluorescence microscopy revealed R123 to be partitioned predominantly in a restricted part of the parasite, which consisted of twisted or branched tubules, or of granular bodies. These structures were frequently connected to each other. The dye retention by these structures was markedly reduced by treating R123-labelled parasites with the proton ionophore, carbonylcyanide m-chlorophenylhydrazone, the potassium ionophore, valinomycin and the inhibitor of electron transport, antimycin A. Thus, these structures are regarded as the parasite mitochondria. Another cationic fluorescent dye, rhodamine 6G, stained the parasite mitochondria, whereas a negatively charged fluorescent dye, fluorescein, and the neutral compounds, rhodamine 110 and rhodamine B, did not. This fact indicates that R123 monitored the parasite mitochondrial membrane potential. T. gondii-infected 3T3 cells were also stained with R123. In contrast to the mitochondria of extracellular parasites, those of intracellular parasites failed to take up the dye. The absence of fluorescence in intracellular parasites persisted until the infected host cells ruptured and liberated daughter parasites 1 day after infection. Parasites, liberated from the host cells, either spontaneously or artificially by passing the infected cells through a 27G needle, regained the ability to take up the dye. After direct microinjection of R123 into the vacuole in which the parasite grows and multiples, the dye appeared in the host-cell mitochondria but not in the parasite's mitochondria. Thus, we conclude that the mitochondrial membrane potential of T. gondii was reduced after invasion of host cells by the parasite.


2002 ◽  
Vol 115 (13) ◽  
pp. 2669-2678 ◽  
Author(s):  
Anna Gustavsson ◽  
Annika Armulik ◽  
Cord Brakebusch ◽  
Reinhard Fässler ◽  
Staffan Johansson ◽  
...  

Invasin of Yersinia pseudotuberculosis binds to β1-integrins on host cells and triggers internalization of the bacterium. To elucidate the mechanism behind the β1-integrin-mediated internalization of Yersinia, a β1-integrin-deficient cell line, GD25, transfected with wild-type β1A, β1B or different mutants of the β1A subunit was used. Both β1A and β1B bound to invasin-expressing bacteria, but only β1A was able to mediate internalization of the bacteria. The cytoplasmic region of β1A, differing from β1B, contains two NPXY motifs surrounding a double threonine site. Exchanging the tyrosines of the two NPXYs to phenylalanines did not inhibit the uptake, whereas a marked reduction was seen when the first tyrosine (Y783) was exchanged to alanine. A similar reduction was seen when the two nearby threonines (TT788-9) were exchanged with alanines. It was also noted that cells affected in bacterial internalization exhibited reduced spreading capability when seeded onto invasin, suggesting a correlation between the internalization of invasin-expressing bacteria and invasin-induced spreading. Likewise, integrins defective in forming peripheral focal complex structures was unable to mediate uptake of invasin-expressing bacteria.


2020 ◽  
Vol 88 (5) ◽  
Author(s):  
Susmita Ghosh ◽  
Elizabeth A. Ruelke ◽  
Joshua C. Ferrell ◽  
Maria D. Bodero ◽  
Kenneth A. Fields ◽  
...  

ABSTRACT The translocated actin recruiting phosphoprotein (Tarp) is a multidomain type III secreted effector used by Chlamydia trachomatis. In aggregate, existing data suggest a role of this effector in initiating new infections. As new genetic tools began to emerge to study chlamydial genes in vivo, we speculated as to what degree Tarp function contributes to Chlamydia’s ability to parasitize mammalian host cells. To address this question, we generated a complete tarP deletion mutant using the fluorescence-reported allelic exchange mutagenesis (FRAEM) technique and complemented the mutant in trans with wild-type tarP or mutant tarP alleles engineered to harbor in-frame domain deletions. We provide evidence for the significant role of Tarp in C. trachomatis invasion of host cells. Complementation studies indicate that the C-terminal filamentous actin (F-actin)-binding domains are responsible for Tarp-mediated invasion efficiency. Wild-type C. trachomatis entry into HeLa cells resulted in host cell shape changes, whereas the tarP mutant did not. Finally, using a novel cis complementation approach, C. trachomatis lacking tarP demonstrated significant attenuation in a murine genital tract infection model. Together, these data provide definitive genetic evidence for the critical role of the Tarp F-actin-binding domains in host cell invasion and for the Tarp effector as a bona fide C. trachomatis virulence factor.


2004 ◽  
Vol 50 (9) ◽  
pp. 719-727 ◽  
Author(s):  
Bochiwe Hara-Kaonga ◽  
Thomas G Pistole

Conflicting reports exist regarding the role of porins OmpC and OmpD in infections due to Salmonella enterica serovar Typhimurium. This study investigated the role of these porins in bacterial adherence to human macrophages and intestinal epithelial cells. ompC and ompD mutant strains were created by transposon mutagenesis using P22-mediated transduction of Tn10 and Tn5 insertions, respectively, into wild-type strain 14028. Fluorescein-labeled wild-type and mutant bacteria were incubated with host cells at various bacteria to cell ratios for 1 h at 37 °C and analyzed by flow cytometry. The mean fluorescence intensity of cells with associated wild-type and mutant bacteria was used to estimate the number of bacteria bound per host cell. Adherence was also measured by fluorescence microscopy. Neither assay showed a significant difference in binding of the ompC mutant and wild-type strains to the human cells. In contrast, the ompD mutant exhibited lowered binding to both cell types. Our findings suggest that OmpD but not OmpC is involved in the recognition of Salmonella serovar Typhimurium by human macrophages and intestinal epithelial cells.Key words: Salmonella, adherence, porins, intestinal epithelial cells, macrophage.


2003 ◽  
Vol 197 (6) ◽  
pp. 735-742 ◽  
Author(s):  
Loïc Coutte ◽  
Sylvie Alonso ◽  
Nathalie Reveneau ◽  
Eve Willery ◽  
Brigitte Quatannens ◽  
...  

Pathogen attachment is a crucial early step in mucosal infections. This step is mediated by important virulence factors called adhesins. To exert these functions, adhesins are typically surface-exposed, although, surprisingly, some are also released into the extracellular milieu, the relevance of which has previously not been studied. To address the role of adhesin release in pathogenesis, we used Bordetella pertussis as a model, since its major adhesin, filamentous hemagglutinin (FHA), partitions between the bacterial surface and the extracellular milieu. FHA release depends on its maturation by the specific B. pertussis protease SphB1. We constructed SphB1-deficient mutants and found that they were strongly affected in their ability to colonize the mouse respiratory tract, although they adhered even better to host cells in vitro than their wild-type parent strain. The defect in colonization could be overcome by prior nasal instillation of purified FHA or by coinfection with FHA-releasing B. pertussis strains, but not with SphB1-producing FHA-deficient strains, ruling out a nonspecific effect of SphB1. These results indicate that the release of FHA is important for colonization, as it may facilitate the dispersal of bacteria from microcolonies and the binding to new sites in the respiratory tract.


2001 ◽  
Vol 69 (1) ◽  
pp. 508-517 ◽  
Author(s):  
Suat L. G. Cirillo ◽  
Luiz E. Bermudez ◽  
Sahar H. El-Etr ◽  
Gerald E. Duhamel ◽  
Jeffrey D. Cirillo

ABSTRACT Successful parasitism of host cells by intracellular pathogens involves adherence, entry, survival, intracellular replication, and cell-to-cell spread. Our laboratory has been examining the role of early events, adherence and entry, in the pathogenesis of the facultative intracellular pathogen Legionella pneumophila. Currently, the mechanisms used by L. pneumophila to gain access to the intracellular environment are not well understood. We have recently isolated three loci, designated enh1,enh2, and enh3, that are involved in the ability of L. pneumophila to enter host cells. One of the genes present in the enh1 locus, rtxA, is homologous to repeats in structural toxin genes (RTX) found in many bacterial pathogens. RTX proteins from other bacterial species are commonly cytotoxic, and some of them have been shown to bind to β2 integrin receptors. In the current study, we demonstrate that the L. pneumophila rtxA gene is involved in adherence, cytotoxicity, and pore formation in addition to its role in entry. Furthermore, an rtxA mutant does not replicate as well as wild-type L. pneumophila in monocytes and is less virulent in mice. Thus, we conclude that the entry genertxA is an important virulence determinant in L. pneumophila and is likely to be critical for the production of Legionnaires' disease in humans.


2017 ◽  
Vol 28 (10) ◽  
pp. 1361-1378 ◽  
Author(s):  
Jacqueline M. Leung ◽  
Yudou He ◽  
Fangliang Zhang ◽  
Yu-Chen Hwang ◽  
Eiji Nagayasu ◽  
...  

The organization of the microtubule cytoskeleton is dictated by microtubule nucleators or organizing centers. Toxoplasma gondii, an important human parasite, has an array of 22 regularly spaced cortical microtubules stemming from a hypothesized organizing center, the apical polar ring. Here we examine the functions of the apical polar ring by characterizing two of its components, KinesinA and APR1, and show that its putative role in templating can be separated from its mechanical stability. Parasites that lack both KinesinA and APR1 (ΔkinesinAΔapr1) are capable of generating 22 cortical microtubules. However, the apical polar ring is fragmented in live ΔkinesinAΔapr1 parasites and is undetectable by electron microscopy after detergent extraction. Disintegration of the apical polar ring results in the detachment of groups of microtubules from the apical end of the parasite. These structural defects are linked to a diminished ability of the parasite to move and invade host cells, as well as decreased secretion of effectors important for these processes. Together the findings demonstrate the importance of the structural integrity of the apical polar ring and the microtubule array in the Toxoplasma lytic cycle, which is responsible for massive tissue destruction in acute toxoplasmosis.


2003 ◽  
Vol 47 (1) ◽  
pp. 309-316 ◽  
Author(s):  
Marc-Jan Gubbels ◽  
Catherine Li ◽  
Boris Striepen

ABSTRACT A high-throughput growth assay for the protozoan parasite Toxoplasma gondii was developed based on a highly fluorescent transgenic parasite line. These parasites are stably transfected with a tandem yellow fluorescent protein (YFP) and are 1,000 times more fluorescent than the wild type. Parasites were inoculated in optical-bottom 384-well culture plates containing a confluent monolayer of host cells, and growth was monitored by using a fluorescence plate reader. The signal was linearly correlated with parasite numbers over a wide array. Direct comparison of the YFP growth assay with the β-galactosidase growth assay by using parasites expressing both reporters demonstrated that the assays' sensitivities were comparable but that the accuracy of the YFP assay was higher, especially at higher numbers of parasites per well. Determination of the 50%-inhibitory concentrations of three known growth-inhibiting drugs (cytochalasin D, pyrimethamine, and clindamycin) resulted in values comparable to published data. The delayed parasite death kinetics of clindamycin could be measured without modification of the assay, making this assay very versatile. Additionally, the temperature-dependent effect of pyrimethamine was assayed in both wild-type and engineered drug-resistant parasites. Lastly, the development of mycophenolic acid resistance after transfection of a resistance gene in T. gondii was followed. In conclusion, the YFP growth assay limits pipetting steps to a minimum, is highly versatile and amendable to automation, and should enable rapid screening of compounds to fulfill the need for more efficient and less toxic antiparasitic drugs.


2008 ◽  
Vol 76 (4) ◽  
pp. 1476-1484 ◽  
Author(s):  
Anne A. Wolf ◽  
Michael G. Jobling ◽  
David E. Saslowsky ◽  
Eli Kern ◽  
Kimberly R. Drake ◽  
...  

ABSTRACT Cholera toxin (CT) moves from the plasma membrane (PM) of host cells to the endoplasmic reticulum (ER) by binding to the lipid raft ganglioside GM1. The homopentomeric B-subunit of the toxin can bind up to five GM1 molecules at once. Here, we examined the role of polyvalent binding of GM1 in CT action by producing chimeric CTs that had B-subunits with only one or two normal binding pockets for GM1. The chimeric toxins had attenuated affinity for binding to host cell PM, as expected. Nevertheless, like wild-type (wt) CT, the CT chimeras induced toxicity, fractionated with detergent-resistant membranes extracted from toxin-treated cells, displayed restricted diffusion in the plane of the PM in intact cells, and remained bound to GM1 when they were immunoprecipitated. Thus, binding normally to two or perhaps only one GM1 molecule is sufficient for association with lipid rafts in the PM and toxin action. The chimeric toxins, however, were much less potent than wt toxin, and they entered the cell by endocytosis more slowly, suggesting that clustering of GM1 molecules by the B-subunit enhances the efficiency of toxin uptake and perhaps also trafficking to the ER.


Sign in / Sign up

Export Citation Format

Share Document