wolbachia endosymbiont
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 18)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Surendra Neupane ◽  
Sylvia I. Bonilla ◽  
Andrew M. Manalo ◽  
Kirsten S. Pelz-Stelinski

AbstractWolbachia, a gram-negative $$\mathrm{\alpha }$$ α -proteobacterium, is an endosymbiont found in some arthropods and nematodes. Diaphorina citri Kuwayama, the vector of ‘Candidatus Liberibacter asiaticus’ (CLas), are naturally infected with a strain of Wolbachia (wDi), which has been shown to colocalize with the bacteria pathogens CLas, the pathogen associated with huanglongbing (HLB) disease of citrus. The relationship between wDi and CLas is poorly understood in part because the complete genome of wDi has not been available. Using high-quality long-read PacBio circular consensus sequences, we present the largest complete circular wDi genome among supergroup-B members. The assembled circular chromosome is 1.52 megabases with 95.7% genome completeness with contamination of 1.45%, as assessed by checkM. We identified Insertion Sequences (ISs) and prophage genes scattered throughout the genomes. The proteins were annotated using Pfam, eggNOG, and COG that assigned unique domains and functions. The wDi genome was compared with previously sequenced Wolbachia genomes using pangenome and phylogenetic analyses. The availability of a complete circular chromosome of wDi will facilitate understanding of its role within the insect vector, which may assist in developing tools for disease management. This information also provides a baseline for understanding phylogenetic relationships among Wolbachia of other insect vectors.


Author(s):  
Ranju Ravindran Santhakumari Manoj ◽  
Maria Stefania Latrofa ◽  
Jairo Alfonso Mendoza-Roldan ◽  
Domenico Otranto

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ranju Ravindran Santhakumari Manoj ◽  
Maria Stefania Latrofa ◽  
Sara Epis ◽  
Domenico Otranto

Abstract Background Wolbachia is an obligate intracellular maternally transmitted, gram-negative bacterium which forms a spectrum of endosymbiotic relationships from parasitism to obligatory mutualism in a wide range of arthropods and onchocercid nematodes, respectively. In arthropods Wolbachia produces reproductive manipulations such as male killing, feminization, parthenogenesis and cytoplasmic incompatibility for its propagation and provides an additional fitness benefit for the host to protect against pathogens, whilst in onchocercid nematodes, apart from the mutual metabolic dependence, this bacterium is involved in moulting, embryogenesis, growth and survival of the host. Methods This review details the molecular data of Wolbachia and its effect on host biology, immunity, ecology and evolution, reproduction, endosymbiont-based treatment and control strategies exploited for filariasis. Relevant peer-reviewed scientic papers available in various authenticated scientific data bases were considered while writing the review. Conclusions The information presented provides an overview on Wolbachia biology and its use in the control and/or treatment of vectors, onchocercid nematodes and viral diseases of medical and veterinary importance. This offers the development of new approaches for the control of a variety of vector-borne diseases. Graphic Abstract


2020 ◽  
Vol 9 (27) ◽  
Author(s):  
Jarrett F. Lebov ◽  
John Mattick ◽  
Silvia Libro ◽  
Benjamin C. Sparklin ◽  
Matthew Chung ◽  
...  

ABSTRACT Lymphatic filariasis is a devastating disease caused by filarial nematode roundworms, which contain obligate Wolbachia endosymbionts. Here, we assembled the genome of wBp, the Wolbachia endosymbiont of the filarial nematode Brugia pahangi, from Illumina, Pacific Biosciences, and Oxford Nanopore data. The complete, circular genome is 1,072,967 bp.


2019 ◽  
Vol 8 (45) ◽  
Author(s):  
Preston J. Basting ◽  
Casey M. Bergman

Here, we report genome assemblies for three strains of Wolbachia pipientis, assembled from unenriched, unfiltered long-read shotgun sequencing data of geographically distinct strains of Drosophila melanogaster. Our simple methodology can be applied to long-read data sets of other Wolbachia-infected species with limited Wolbachia-host lateral gene transfers to produce complete assemblies for this important model symbiont.


Sign in / Sign up

Export Citation Format

Share Document