vole species
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 17)

H-INDEX

18
(FIVE YEARS 2)

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1945
Author(s):  
Olga Bondareva ◽  
Evgeny Genelt-Yanovskiy ◽  
Tatyana Petrova ◽  
Semen Bodrov ◽  
Antonina Smorkatcheva ◽  
...  

This study evaluates signatures of selection in the evolution of the mitochondrial DNA of voles, subfamily Arvicolinae, during the colonization of subterranean environments. The comparative sequence analysis of mitochondrial protein-coding genes of eight subterranean vole species (Prometheomys schaposchnikowi, three species of the genus Ellobius: Ellobius talpinus, Ellobius fuscocapillus and Ellobius lutescens, two species of the genus Terricola: Terricola subterraneus and Terricola daghestanicus, Lasiopodomys mandarinus, and Hyperacrius fertilis) and their closest aboveground relatives was applied using codon-substitution models. The highest number of selection signatures was detected in genes ATP8 and CYTB. The relaxation of selection was observed in most mitochondrial DNA protein-coding genes for subterranean species. The largest amount of relaxed genes is discovered in mole voles (genus Ellobius). The number of selection signatures was found to be independent of the evolutionary age of the lineage but fits the degree of specialization to the subterranean niche. The common trends of selective pressures were observed among the evolutionary ancient and highly specialized subterranean rodent families and phylogenetically young lineages of voles. It suggests that the signatures of adaptation in individual mitochondrial protein-coding genes associated with the colonization of the subterranean niche may appear within a rather short evolutionary timespan.


Author(s):  
Laura van Rosmalen ◽  
Bernd Riedstra ◽  
Nico Beemster ◽  
Cor Dijkstra ◽  
Roelof Hut

Many mammalian species use photoperiod as a predictive cue to time seasonal reproduction. In addition, metabolic effects on the reproductive axis may also influence seasonal timing, especially in female small, short-lived mammals. To get a better understanding of how annual cycling environmental cues impact reproductive function and plasticity in small, short-lived herbivores with different geographic origins, we investigated the mechanisms underlying integration of temperature in the photoperiodic-axis regulating female reproduction in a Northern vole species (tundra vole, Microtus oeconomus) and in a Southern vole species (common vole, Microtus arvalis). We show that photoperiod and temperature interact to determine appropriate physiological responses; there is species-dependent annual variation in the sensitivity to temperature for reproductive organ development. In common voles, temperature can overrule photoperiodical spring-programmed responses, with reproductive organ mass being higher at 10°C than at 21°C, whereas in autumn they are less sensitive to temperature. These findings are in line with our census data, showing an earlier onset of spring reproduction in cold springs, while reproductive offset in autumn is synchronized to photoperiod. The reproductive organs of tundra voles were relatively insensitive to temperature, whereas hypothalamic gene expression was generally upregulated at 10°C. Thus, both vole species use photoperiod, whereas only common voles use temperature as a cue to control spring reproduction, which indicates species-specific reproductive strategies. Due to global warming, spring reproduction in common voles will be delayed, perhaps resulting in shorter breeding seasons and thus declining populations, as observed throughout Europe.


Author(s):  
Olga Bondareva ◽  
Evgeny Genelt-Yanovskiy ◽  
Tatyana Petrova ◽  
Semen Bodrov ◽  
Antonina Smorkatcheva ◽  
...  

The current study evaluates the selection signals in the evolution of mitochondrial DNA of voles, subfamily Arvicolinae, during the colonization of subterranean environments. The comparative sequence analysis of mitochondrial protein-coding genes of eight subterranean vole species (Prometheomys schaposchnikowi, three species of the genus Ellobius: E. talpinus, E. fuscocapillus and E. lutescens, two species of the genus Terricola: T. subterraneus and T. daghestanicus, Lasiopodomys mandarinus and Hyperacrius fertilis) and their closest aboveground relatives using codon-substitution models was applied. The highest number of selection signatures was detected in genes ATP8 and CYTB. The relaxation of selection was observed in most mtDNA protein-coding genes. In mole voles (genus Ellobius) the signatures of adaptive evolution of mitochondrial genes related to subterranean niche were most pronounced. The number of selection signatures was found to be independent of the evolutionary age of the lineage but fits the degree of specialization to the subterranean niche. The common trends of selective pressures were observed among the evolutionary ancient and highly specialized subterranean rodent families and phylogenetically young lineages of voles. It suggests that the signatures of adaptations in individual mitochondrial protein-coding genes associated with the colonization of the subterranean niche may appear within a rather short evolutionary timespan.


Author(s):  
Alexey S. Bogdanov ◽  
Lyudmila A. Khlyap ◽  
Haluk Kefelioğlu ◽  
Ahmet Y. Selçuk ◽  
Valery V. Stakheev ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1814
Author(s):  
Linas Balčiauskas ◽  
Raminta Skipitytė ◽  
Andrius Garbaras ◽  
Vitalijus Stirkė ◽  
Laima Balčiauskienė ◽  
...  

Diets and trophic positions of co-occurring animals are fundamental issues in their ecology, and these issues in syntopic rodents have been studied insufficiently. Using carbon (δ13C) and nitrogen (δ15N) stable isotope ratios from hair samples, we analysed the trophic niches of common (Microtus arvalis), field (M. agrestis), and root (M. oeconomus) voles co-occurring in orchards, berry plantations, and nearby meadows (as control habitat to orchards and plantations). We tested if the niche of the dominant common vole was the widest, whether its width depended on the presence of other vole species, and whether there were intraspecific differences. Results suggest stability in the trophic niches of all three Microtus species, as season explained only 2% of the variance. The widest trophic niche was a characteristic of the dominant common vole, the range of δ13C values exceeding the other two species by 1.6, the range of δ15N values exceeding the other two species by 1.9, and the total area of niche exceeding that of the other voles by 2.3–3 times. In the meadows and apple orchards, co-occurring vole species were separated according to δ13C (highest values in the dominant common vole), but they maintained similar δ15N values. Results give new insights into the trophic ecology small herbivores, showing the impact of species co-occurrence.


2021 ◽  
Author(s):  
Maciej Grzybek ◽  
Daniela Antolová ◽  
Katarzyna Tołkacz ◽  
Mohammed Alsarraf ◽  
Jolanta Behnke-Borowczyk ◽  
...  

ABSTRACTToxoplasma gondii is a significant pathogen affecting humans and animals. We conducted seromonitoring for T. gondii in four sylvatic rodent species in Poland. We report an overall seroprevalence of 5.5% (3.6% for Myodes glareolus and 20% for other vole species). Seroprevalence in bank voles varied significantly between host age and sex.


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1820
Author(s):  
Maciej Grzybek ◽  
Katarzyna Tołkacz ◽  
Tarja Sironen ◽  
Sanna Mäki ◽  
Mohammed Alsarraf ◽  
...  

Rodents are known to be reservoir hosts for a plethora of zoonotic viruses and therefore play a significant role in the dissemination of these pathogens. We trapped three vole species (Microtus arvalis, Alexandromys oeconomus and Microtus agrestis) in northeastern Poland, all of which are widely distributed species in Europe. Using immunofluorescence assays, we assessed serum samples for the presence of antibodies to hantaviruses, arenaviruses and cowpox viruses (CPXV). We detected antibodies against CPXV and Puumala hantavirus (PUUV), the overall seroprevalence of combined viral infections being 18.2% [10.5–29.3] and mostly attributed to CPXV. We detected only one PUUV/TULV cross-reaction in Microtus arvalis (1.3% [0.1–7.9]), but found similar levels of antibodies against CPXV in all three vole species. There were no significant differences in seroprevalence of CPXV among host species and age categories, nor between the sexes. These results contribute to our understanding of the distribution and abundance of CPXV in voles in Europe, and confirm that CPXV circulates also in Microtus and Alexandromys voles in northeastern Poland.


Author(s):  
Hong Sun ◽  
Chuyi Li ◽  
Yifeng Zhang ◽  
Mengwan Jiang ◽  
Qianqian Dong ◽  
...  
Keyword(s):  

2020 ◽  
Vol 223 (20) ◽  
pp. jeb230987
Author(s):  
Laura van Rosmalen ◽  
Jayme van Dalum ◽  
David G. Hazlerigg ◽  
Roelof A. Hut

ABSTRACTTo optimally time reproduction, seasonal mammals use a photoperiodic neuroendocrine system (PNES) that measures photoperiod and subsequently drives reproduction. To adapt to late spring arrival at northern latitudes, a lower photoperiodic sensitivity and therefore a higher critical photoperiod for reproductive onset is necessary in northern species to arrest reproductive development until spring onset. Temperature–photoperiod relationships, and hence food availability–photoperiod relationships, are highly latitude dependent. Therefore, we predict PNES sensitivity characteristics to be latitude dependent. Here, we investigated photoperiodic responses at different times during development in northern (tundra or root vole, Microtus oeconomus) and southern vole species (common vole, Microtus arvalis) exposed to constant short (SP) or long photoperiod (LP). Although the tundra vole grows faster under LP, no photoperiodic effect on somatic growth is observed in the common vole. In contrast, gonadal growth is more sensitive to photoperiod in the common vole, suggesting that photoperiodic responses in somatic and gonadal growth can be plastic, and might be regulated through different mechanisms. In both species, thyroid-stimulating hormone β-subunit (Tshβ) and iodothyronine deiodinase 2 (Dio2) expression is highly increased under LP, whereas Tshr and Dio3 decrease under LP. High Tshr levels in voles raised under SP may lead to increased sensitivity to increasing photoperiods later in life. The higher photoperiodic-induced Tshr response in tundra voles suggests that the northern vole species might be more sensitive to thyroid-stimulating hormone when raised under SP. In conclusion, species differences in developmental programming of the PNES, which is dependent on photoperiod early in development, may form different breeding strategies as part of latitudinal adaptation.


Sign in / Sign up

Export Citation Format

Share Document