apicobasal polarity
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 23)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Caitlin R Francis ◽  
Hayle Kincross ◽  
Erich J Kushner

In early blood vessel development, trafficking programs, such as those using Rab GTPases, are tasked with delivering vesicular cargo with high spatiotemporal accuracy. However, the function of many Rab trafficking proteins remain ill-defined in endothelial tissue; therefore, their relevance to blood vessel development is unknown. Rab35 has been shown to play an enigmatic role in cellular behaviors which differs greatly between tissue-type and organism. Importantly, Rab35 has never been characterized for its potential contribution in sprouting angiogenesis; thus, our goal was to map Rab35s primary function in angiogenesis. Our results demonstrate that Rab35 is critical for sprout formation; in its absence apicobasal polarity is entirely lost in vitro and in vivo. To determine mechanism, we systematically explored established Rab35 effectors and show that none are operative in endothelial cells. However, we find that Rab35 partners with DENNd1c, an evolutionarily divergent guanine exchange factor, to localize to actin. Here, Rab35 regulates actin polymerization, which is required to setup proper apicobasal polarity during sprout formation. Our findings establish that Rab35 is a potent regulator of actin architecture during blood vessel development.


Biology Open ◽  
2021 ◽  
Vol 10 (11) ◽  
Author(s):  
Mariana Barrera-Velázquez ◽  
Luis Daniel Ríos-Barrera

ABSTRACT Tissues build complex structures like lumens and microvilli to carry out their functions. Most of the mechanisms used to build these structures rely on cells remodelling their apical plasma membranes, which ultimately constitute the specialised compartments. In addition to apical remodelling, these shape changes also depend on the proper attachment of the basal plasma membrane to the extracellular matrix (ECM). The ECM provides cues to establish apicobasal polarity, and it also transduces forces that allow apical remodelling. However, physical crosstalk mechanisms between basal ECM attachment and the apical plasma membrane remain understudied, and the ones described so far are very diverse, which highlights the importance of identifying the general principles. Here, we review apicobasal crosstalk of two well-established models of membrane remodelling taking place during Drosophila melanogaster embryogenesis: amnioserosa cell shape oscillations during dorsal closure and subcellular tube formation in tracheal cells. We discuss how anchoring to the basal ECM affects apical architecture and the mechanisms that mediate these interactions. We analyse this knowledge under the scope of other morphogenetic processes and discuss what aspects of apicobasal crosstalk may represent widespread phenomena and which ones are used to build subsets of specialised compartments.


2021 ◽  
Vol 134 (21) ◽  
Author(s):  
Claudia G. Vasquez ◽  
Eva L. de la Serna ◽  
Alexander R. Dunn

ABSTRACT Polarized epithelia define a topological inside and outside, and hence constitute a key evolutionary innovation that enabled the construction of complex multicellular animal life. Over time, this basic function has been elaborated upon to yield the complex architectures of many of the organs that make up the human body. The two processes necessary to yield a polarized epithelium, namely regulated adhesion between cells and the definition of the apicobasal (top–bottom) axis, have likewise undergone extensive evolutionary elaboration, resulting in multiple sophisticated protein complexes that contribute to both functions. Understanding how these components function in combination to yield the basic architecture of a polarized cell–cell junction remains a major challenge. In this Review, we introduce the main components of apicobasal polarity and cell–cell adhesion complexes, and outline what is known about their regulation and assembly in epithelia. In addition, we highlight studies that investigate the interdependence between these two networks. We conclude with an overview of strategies to address the largest and arguably most fundamental unresolved question in the field, namely how a polarized junction arises as the sum of its molecular parts.


2021 ◽  
Author(s):  
Jinghua Gui ◽  
Yunxian Huang ◽  
Satu-Marja Myllymäki ◽  
Marja Mikkola ◽  
Osamu Shimmi

AbstractMaintaining apicobasal polarity (ABP) is crucial for epithelial integrity and homeostasis during tissue development. Although recent studies have greatly advanced our understanding of intracellular mechanisms underlying ABP establishment, it remains largely unknown how the ABP is regulated at the tissue level. Here, we address intercellular mechanisms coordinating ABP using the Drosophila wing imaginal disc. By studying Scribble, a key ABP determinant, we show that ABP is regulated through intercellular alignment, which takes place either progressively or regressively in a context-dependent manner. Cells expressing wild type scribble progressively restore ABP in scribble hypomorphic mutant cells. In contrast, cells with conditional scribble knockdown instigate the regressive loss of polarity in abutting wild type cells. Our data reveal that genetic and physical interactions between Scribble, Septate junction complex and α-Catenin appear to be key for sustaining intercellular network of ABP. Taken together, our findings indicate that the intercellular relay of the status of ABP contributes to the robustness of polarity across the tissue.


2021 ◽  
pp. 101289
Author(s):  
Regina B. Troyanovsky ◽  
Indrajyoti Indra ◽  
Rei Kato ◽  
Brian J. Mitchell ◽  
Sergey M. Troyanovsky

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ge-Hong Sun-Wada ◽  
Hiroyuki Tabata ◽  
Yoh Wada

AbstractThe endocytic compartments keep their interior acidic through the inward flow of protons and anions from the cytosol. Acidification is mediated by a proton pump known as vacuolar-type ATPase (V-ATPase) and transporters conferring anion conductance to the organellar membrane. In this study, we analysed the phenotype of mouse embryos lacking the V-ATPase c-subunit. The mutant embryos differentiated embryonic epithelial tissues, primitive endoderm, epiblast, and extraembryonic ectoderm; however, the organisation of these epithelia was severely affected. The apical-basal polarity in the visceral endoderm layer was not properly established in the mutant embryos, resulting in abnormal epithelial morphology. Thus, the function of V-ATPase is imperative for the establishment and/or maintenance of epithelial cell polarity, which is required for early embryogenesis.


2021 ◽  
Vol 15 ◽  
Author(s):  
Suad Hamdan Almasoudi ◽  
Gerhard Schlosser

Using immunostaining and confocal microscopy, we here provide the first detailed description of otic neurogenesis in Xenopus laevis. We show that the otic vesicle comprises a pseudostratified epithelium with apicobasal polarity (apical enrichment of Par3, aPKC, phosphorylated Myosin light chain, N-cadherin) and interkinetic nuclear migration (apical localization of mitotic, pH3-positive cells). A Sox3-immunopositive neurosensory area in the ventromedial otic vesicle gives rise to neuroblasts, which delaminate through breaches in the basal lamina between stages 26/27 and 39. Delaminated cells congregate to form the vestibulocochlear ganglion, whose peripheral cells continue to proliferate (as judged by EdU incorporation), while central cells differentiate into Islet1/2-immunopositive neurons from stage 29 on and send out neurites at stage 31. The central part of the neurosensory area retains Sox3 but stops proliferating from stage 33, forming the first sensory areas (utricular/saccular maculae). The phosphatase and transcriptional coactivator Eya1 has previously been shown to play a central role for otic neurogenesis but the underlying mechanism is poorly understood. Using an antibody specifically raised against Xenopus Eya1, we characterize the subcellular localization of Eya1 proteins, their levels of expression as well as their distribution in relation to progenitor and neuronal differentiation markers during otic neurogenesis. We show that Eya1 protein localizes to both nuclei and cytoplasm in the otic epithelium, with levels of nuclear Eya1 declining in differentiating (Islet1/2+) vestibulocochlear ganglion neurons and in the developing sensory areas. Morpholino-based knockdown of Eya1 leads to reduction of proliferating, Sox3- and Islet1/2-immunopositive cells, redistribution of cell polarity proteins and loss of N-cadherin suggesting that Eya1 is required for maintenance of epithelial cells with apicobasal polarity, progenitor proliferation and neuronal differentiation during otic neurogenesis.


2021 ◽  
pp. mbc.E21-01-0001
Author(s):  
Indrajyoti Indra ◽  
Regina B. Troyanovsky ◽  
Kathleen J. Green ◽  
Sergey M. Troyanovsky

Desmosomes (DSMs) together with Adherens Junctions (AJs) and Tight Junctions (TJs) constitute the apical cell junctional complex (AJC). While the importance of the apical and basolateral polarity machinery in the organization of AJs and TJs is well-established, how DSMs are positioned within the AJC is not understood. Here we use highly polarized DLD1 cells as a model to address how DSMs integrate into the AJC. We found that knockout of the desmosomal ARM protein Pkp3, but not other major DSM proteins, uncouples DSMs from AJC without blocking DSM assembly. DLD1 cells also exhibit a prominent extra-DSM pool of Pkp3, concentrated in tricellular (tC) contacts. Probing distinct apicobasal polarity pathways revealed that neither the DSM's association with AJC, nor the extra-DSM pool of Pkp3 are abolished in cells with defects in Scrib module proteins responsible for basolateral membrane development. However, a loss of the apical polarity protein, Par3 completely eliminates the extra-DSM pool of Pkp3 and disrupts AJC localization of desmosomes, dispersing these junctions along the entire length of cell-cell contacts. Our data are consistent with a model whereby Par3 facilitates DSM assembly within the AJC, controlling the availability of an assembly competent pool of Pkp3 stored in tC contacts.


2021 ◽  
Author(s):  
Joo Lee ◽  
Jérémy Magescas ◽  
Richard D. Fetter ◽  
Jessica L. Feldman ◽  
Kang Shen

Author(s):  
Antonio E. Paniagua ◽  
Alicia Segurado ◽  
Jorge F. Dolón ◽  
Julián Esteve-Rudd ◽  
Almudena Velasco ◽  
...  

Apicobasal polarity is essential for epithelial cell function, yet the roles of different proteins in its completion is not fully understood. Here, we have studied the role of the polarity protein, CRB2, in human retinal pigment epithelial (RPE) cells during polarization in vitro, and in mature murine RPE cells in vivo. After establishing a simplified protocol for the culture of human fetal RPE cells, we studied the temporal sequence of the expression and localization of polarity and cell junction proteins during polarization in these epithelial cells. We found that CRB2 plays a key role in tight junction maintenance as well as in cell cycle arrest. In addition, our studies in vivo show that the knockdown of CRB2 in the RPE affects to the distribution of different apical polarity proteins and results in perturbed retinal homeostasis, manifested by the invasion of activated microglial cells into the subretinal space. Together our results demonstrate that CRB2 is a key protein for the development and maintenance of a polarized epithelium.


Sign in / Sign up

Export Citation Format

Share Document