The effects of solvent viscosity on the morphology and photocatalytic activity of BiOBr catalysts

Author(s):  
Fengjuan Ge ◽  
Jie Zhu ◽  
Yan Xu ◽  
Jing Li ◽  
Xueyang Zhang

BiOBr photocatalysts were prepared by changing the solvent and synthesis method. SEM, XRD and BET characterization shows that the sample prepared in high-viscosity solution by precipitation method has tremella-like microstructure, with smaller size and higher surface area. Among them, the BiOBr prepared in glycerol solution (GR-P) has the highest surface area of 113.8 m2⋅[Formula: see text]. XRD also indicates that the GR-P has much more exposed (110) facets than other samples. The Rhodamine B degradation tests show that the GR-P has the best activity on both deethylation and aromatic ring destruction steps, indicating that the exposed (110) facets promote the degradation process.

Author(s):  
Mukholit, Heri Sutanto ◽  
Ngurah Ayu Ketut Umiati ◽  
Eko Hidayanto

Bi2O3 has successfully been synthesized using precipitation method with sintering temperature variations of 400oC, 450o C, 500o C, 550o C, and 600o C. Crystallinity property of resulting Bi2O3 powder has also been tested with XRD and morphology properties were tested with SEM. Meanwhile, photocatalytic properties were tested by using it to degrade Rhodamine B under sunlight. Results of XRD tests show that differences in sintering temperature affect crystallite size. Increases in sintering temperature between 400o C and 500o C result in greater crystallite size, whereas sintering temperature between 550o C and 600oC result in smaller crystallite size. Results of SEM tests show that resulting Bi2O3 has rod-like structure, While results of degradation tests show that increases in sintering temperature enhances photocatalytic activities of Bi2O3, as evident with Bi2O3 undergoing sintering at 600oC was able to degrade Rhodamine B with 56.74% effectiveness and degradation rate of 0.007 ppm/min.


2018 ◽  
Vol 7 (1) ◽  
pp. 30-37 ◽  
Author(s):  
Ramesh Vinayagam ◽  
Thivaharan Varadavenkatesan ◽  
Raja Selvaraj

Abstract:An environmentally benign method to synthesize silver nanoparticles (SNPs) using the leaf extract ofBridelia retusawas developed. The UV-Vis absorption spectrum of the synthesized SNPs displayed a surface plasmon peak at 420 nm. Scanning electron microscopy (SEM) revealed the irregular shaped nanoparticles, and energy dispersive X-ray (EDX) ascertained the presence of metallic silver by showing a strong signal at 3 eV. The crystalline structure of metallic silver was confirmed by X-ray diffraction (XRD). The mean size of the SNPs was calculated as 16.21 nm. Fourier infrared (FT-IR) spectroscopic studies displayed specific bands for various functional groups and affirmed the function of reduction and stabilization of SNPs. The stability was endorsed by the zeta potential value of −18.1 mV. The results evidenced that this leaf extract-mediated synthesis method is eco-friendly, rapid, and cheap. The catalytic power of the SNPs was investigated for Rhodamine B dye degradation. The SNPs completely degraded Rhodamine B within 9 min; thus, the dye degradation process was very rapid. The pseudo-first order degradation constant was found out to be 0.1323 min−1. This paves the way for the future development of novel nano-catalysts to reduce environmental pollution.


2009 ◽  
Vol 1171 ◽  
Author(s):  
Chao-Ming Huang ◽  
Guan T. Pan ◽  
Lung C. Chen ◽  
C.K. Thomas Yang ◽  
Wen S. Chang

AbstractVisible-light-driven Ag3VO4 photocatalysts were successfully synthesized using low-temperature hydrothermal synthesis method. Under various hydrothermal conditions, the structures of silver vanadates were tuned by manipulating the hydrothermal time and the ratio of silver to vanadium. X-ray diffraction (XRD) results reveal that the powders prepared in a stoichiometric ratio consisted of pure α-Ag3VO4 or mixed phases of Ag4V2O7 and α-Ag3VO4. With increasing the Ag-to-V mole ratio to 6:1, the resulting samples were identified as pure monoclinic structure α-Ag3VO4. UV-vis spectroscopy indicated that silver vanadate particles had strong visible light absorption with associated band gaps in the range of 2.2-2.5 eV. The sample synthesized in the excess silver exhibited higher photocatalytic activity than that synthesized in a stoichiometric ratio. The powder synthesized at silver-rich at 140℃ for 4 h (SHT4) exhibited the highest photocatalytic activity among all samples. The reactivity of SHT4 (surface area, 3.52 m2 g-1) on the decomposition of gaseous benzene was about 16 times higher than that of P25 (surface area, 49.04 m2 g-1) under visible light irradiation. A well developed crystallinity of Ag3VO4 of SHT 4 was considered to enhance the photocatalytic efficiency.


2010 ◽  
Vol 129-131 ◽  
pp. 784-788 ◽  
Author(s):  
Min Wang ◽  
Qiong Liu ◽  
Dong Zhang

BiVO4/FeVO4 composite photocatalyst samples were prepared by calcining the mixture of FeVO4 and BiVO4 precusor which were prepared through liquid phase precipitation method for further increasing the photocatalytic efficiency of FeVO4. The catalysts were characterized by X-ray diffraction (XRD), scanning electron microsoope(SEM)and specific surface area (BET). The photocatalytic activity was evaluated by photocatalytic degradation of methyl orange (MO) solution under visible light. The XRD patterns indicate that BiVO4/FeVO4 composite photocatalysts consist of triclinic phase and the lattice was not distorted beacause of doping Bi. But the morphology change greatly and the specific surface area has little change. In the experimental conditions used, the optimal photocatalytic activity for all the prepared samples was reached when BiVO4 doping was 22 at%. The degradation rate of MO was increased by 20% or so than that of pure FeVO4.


2020 ◽  
Vol 6 (1) ◽  
pp. 1-9
Author(s):  
Febiyanto Febiyanto ◽  
Uyi Sulaeman

Synthesis of Ag3PO4 photocatalyst under the varied concentrations of AgNO3 and Na2HPO4·12H2O as starting material has been successfully synthesized using the co-precipitation method. The concentration of AgNO3 is 0.1; 0.5; 1.0; and 2.0 M, whereas Na2HPO4·12H2O is 0.03; 0.17; 0.33; and 0.67 M, respectively. The co-precipitations were carried out under aqueous solution. As-synthesized photocatalysts were examined to degrade Rhodamine B (RhB) under blue light irradiation. The results showed that varying concentrations of starting materials affect the photocatalytic activities, the intensity ratio of [110]/[200] facet plane, and their bandgap energies of Ag3PO4 photocatalyst. The highest photocatalytic activity of the sample was obtained by synthesized using the 1.0 M of AgNO3 and 0.33 M of Na2HPO4·12H2O (AP-1.0). This is due to the high [110] facet plane and increased absorption along the visible region of AP-1.0 photocatalyst. Therefore, this result could be a consideration for the improvement of Ag3PO4 photocatalyst.


2021 ◽  
Vol 407 ◽  
pp. 161-172
Author(s):  
Mahbboobeh Rezaei ◽  
Ali Shokuhfar ◽  
Nikta Shahcheraghi

In this work, a flower-shaped ZnO/GO/Fe3O4 ternary nanocomposite was synthesized via the co-precipitation method. Two significant goals of the study were boosting the degradation efficiency of ZnO and achieving a fast and simple synthesis approach. The structure, properties, and morphology of the product were characterized, and the effect of the ZnO flower-shaped structure in combination with GO nanosheets and magnetite nanoparticles was investigated on the photocatalytic activity. The structure and quality of the prepared nanocomposite were assessed by X-ray diffraction pattern, UV-visible DRS spectroscopy, Field Emission Scanning Electron Microscopy (FE-SEM). The catalytic activity of the nanocomposite was assessed by spectrophotometric analysis. The developed nanocomposite offered high photodegradation efficiency in Rhodamine B degradation under UV-C light in comparison with pure ZnO. At a specific period, the efficiency of the synthesized sample was about two times greater than that of pristine ZnO particles. Our nanocomposite is anticipated to have practical benefits in wastewater treatment given its good performance, economic savings through reducing the amount of catalyst consumption and saving time, and being a facile and fast synthesis method.


2011 ◽  
Vol 291-294 ◽  
pp. 61-64
Author(s):  
Yu Shiang Wu ◽  
Min He Tsau

Nanorod-shaped zinc stannate Zn2SnO4 (ZTO) with great photocatalytic activity was successfully synthesized via a co-precipitation method. In this paper, a strong base (NaOH) and a weak base (Na2CO3) are adopted as precipitants in order to form the precursor precipitate. The titration endpoints are fixed at pH6, pH8, and pH10 in order to adjust the solution precipitant quantity. Dependent variables above were not seen in other research before. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results show that the powders synthesized were ZTO nano-particles. Photocatalytic activity of the powders was measured utilizing a photocatalytic degradation reaction with methylene blue (MB) solution. The smallest particles were obtained by utilizing NaOH as a precipitant and adjusting pH to 6. Based on TEM images, the ZTO had nano-rod particle morphology. However, when precipitant Na2CO3 was utilized, particles agglomerated together, reducing specific surface area. Hence, the former sample shows better photocatalytic activity than the latter one. Consequently, powders titrated to pH6 by precipitant NaOH and calcined for 1 hour will form partly nano-rod particles with slight agglomeration, increasing the specific surface area of ZTO and bringing about the best photocatalytic characteristics.


2019 ◽  
Vol 12 (01) ◽  
pp. 1850100 ◽  
Author(s):  
Weiwei Lian ◽  
Libo Wang ◽  
Xiaolong Wang ◽  
Changjie Shen ◽  
Aiguo Zhou ◽  
...  

In the present work, a novel BiOCl/Ti3C2 nanostructured composite was synthesized using a simple precipitation method. The morphology and structure of the nanocomposite were characterized while its photocatalytic properties were studied using methyl orange dye (MO) as the model pollutant under visible-light irradiation. The results indicated that the obtained BiOCl has flower-like nanostructured morphology, which is composed of nanosheets. After the introduction of Ti3C2, the petaloid-shaped BiOCl grew on the surface layers of Ti3C2. Additionally, the photocatalytic degradation tests of MO showed that the BiOCl/Ti3C2 nanocomposite had a much higher degradation efficiency compared to that of the pristine BiOCl. Herein, a possible photocatalytic mechanism for BiOCl/Ti3C2 nanocomposites was also proposed. The results suggest that the Ti3C2 addition can effectively promote the photoelectron separation from vacancies, which leads to photocatalytic activity enhancement of the BiOCl/Ti3C2 composite.


Author(s):  
Sivakumar Krishnamoorthy ◽  
Dharani M.

Zinc oxide (ZnO) nanoparticles prepared using simple co-precipitation method are characterized and photocatalytic activity is tested on the degradation of methylene blue and rhodamine B organic pollutants. Morphological and structural properties of synthesized nanomaterial have been characterized using FESEM, EDAX spectroscopy, and XRD, while UV-visible DRS spectroscopy and photoluminescence have been used to understand their optical properties. The photocatalytic behaviour of synthesized nanoparticles was evaluated on the degradation of methylene blue (MB) and rhodamine B (RhB) organic pollutants under solar light irradiation. The highest degradation was achieved for MB (100%) over RhB (96%). Preliminary investigation shows the effective degradation of organic pollutants by ZnO nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document