Enhanced direct‐current breakdown strength of Al 2 O 3 /epoxy resin composites through plasma fluoridation of fillers interface

2021 ◽  
Author(s):  
Fang‐cheng Lü ◽  
Jing‐xuan Song ◽  
Hao‐ou Ruan ◽  
Mei‐ying Zhu ◽  
Shuang‐shuang Wang ◽  
...  
Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2126
Author(s):  
Liangsong Huang ◽  
Xitao Lv ◽  
Yongzhe Tang ◽  
Guanghui Ge ◽  
Peng Zhang ◽  
...  

Alumina nanowires (Al2O3-NWs)/epoxy resin composites have been thoroughly studied due to their excellent insulating and dielectric performance. In particular, understanding the effect of nano-alumina with different morphologies on the dielectric performance of composites is of great significance. In this study, Al2O3-NWs with lengths of approximately 100 nm and diameters of approximately 5 nm were prepared and blended with anepoxy resin to form composites, and the effect of the mass fraction of fillers on the thermal conductivity of the composites was investigated. Specifically, the effect of alumina fillers with ananowire structure on the insulating and dielectric performance and breakdown strength of the epoxy composites were analyzed. The influence principle of the interfacial effect and heat accumulation on the dielectric and insulating properties of the composites were described. The results demonstrated that the thermal conductivity of Al2O3-NWs/epoxy resin composites was higher than that of the bare epoxy resin. The thermal conductivity of Al2O3-NWs/epoxy resin composites increased with increasing mass fraction of fillers. When the mass fraction of fillers was 10%, the thermal conductivity of the composite was 134% higher than that of the epoxy resin matrix. The volume resistivity of the composites first increased and then decreased as the mass fraction of fillers increased, while the dielectric constant of the composites increased with increasing mass fraction of fillers and decreasing frequency. The dielectric loss of the composites decreased and then increased as the mass fraction of fillers increased, and it increased with increasing frequency. Additionally, the alternating current breakdown strength of the composites first increased and then decreased withincreasingmass fraction of fillers.


2019 ◽  
Vol 32 (3) ◽  
pp. 306-315 ◽  
Author(s):  
Liang Xu ◽  
Yi He ◽  
Shaohua Ma ◽  
Li Hui

T800/high-temperature epoxy resin composites with different hole shapes were subjected to hygrothermal ageing and thermal-oxidative ageing, and the effects of these different ageing methods on the open-hole properties of the composites were investigated, including analyses of the mass changes, surface topography changes (before and after ageing), fracture morphologies, open-hole compressive performance, dynamic mechanical properties and infrared spectrum. The results showed that only physical ageing occurred under hygrothermal ageing (70°C and 85% relative humidity), and the equilibrium moisture absorption rate was only approximately 0.72%. In contrast, under thermal-oxidative ageing at 190°C, both physical ageing and chemical ageing occurred. After ageing, the open-hole compressive strength of the composite laminates with different hole shapes decreased significantly, but the open-hole compressive strength after thermal-oxidative ageing was greater than that after hygrothermal ageing. Among the aged and unaged laminates, the laminates with round holes exhibited the largest open-hole compressive strength, followed by those with the elliptical holes, square holes and diamond holes. The failure modes of the laminates were all through-hole failures. The unaged samples had a glass transition temperature ( T g) of 226°C, whereas the T g of the samples after hygrothermal ageing was 208°C, which is 18°C less than that of the unaged samples, and the T g of the samples after thermal-oxidative ageing was 253°C, which is 27°C greater than that of the unaged samples.


Author(s):  
Muhammad Zeeshan khan ◽  
Muhammad Hamza Younes ◽  
Aurang Zaib ◽  
Umar Farooq ◽  
Asim khan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document