scholarly journals Recognition and Sensing of Chiral Organic Molecules by Chiral Porphyrinoids: A Review

Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 204
Author(s):  
Gabriele Travagliante ◽  
Massimiliano Gaeta ◽  
Roberto Purrello ◽  
Alessandro D’Urso

Porphyrinoids are extremely attractive for their electronic, optical, and coordination properties as well as for their versatile substitution at meso/β-positions. All these features allow porphyrinoids to behave as chiroptical hosts for chiral recognition by means of non-covalent interactions towards chiral guests. Over the years, chiral discrimination of chiral molecules such as amino acids, alcohols, amines, hydroxy-carboxylic acids, etc. has aroused the interest of the scientific community. Hence, this review aims to report on the progress to date by illustrating some relevant research regarding the chiral recognition of a multitude of chiral organic guests through several chiral mono- and bis-porphyrins via different spectroscopic techniques.

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1942
Author(s):  
Ilche Gjuroski ◽  
Julien Furrer ◽  
Martina Vermathen

Porphyrinic compounds are widespread in nature and play key roles in biological processes such as oxygen transport in blood, enzymatic redox reactions or photosynthesis. In addition, both naturally derived as well as synthetic porphyrinic compounds are extensively explored for biomedical and technical applications such as photodynamic therapy (PDT) or photovoltaic systems, respectively. Their unique electronic structures and photophysical properties make this class of compounds so interesting for the multiple functions encountered. It is therefore not surprising that optical methods are typically the prevalent analytical tool applied in characterization and processes involving porphyrinic compounds. However, a wealth of complementary information can be obtained from NMR spectroscopic techniques. Based on the advantage of providing structural and dynamic information with atomic resolution simultaneously, NMR spectroscopy is a powerful method for studying molecular interactions between porphyrinic compounds and macromolecules. Such interactions are of special interest in medical applications of porphyrinic photosensitizers that are mostly combined with macromolecular carrier systems. The macromolecular surrounding typically stabilizes the encapsulated drug and may also modify its physical properties. Moreover, the interaction with macromolecular physiological components needs to be explored to understand and control mechanisms of action and therapeutic efficacy. This review focuses on such non-covalent interactions of porphyrinic drugs with synthetic polymers as well as with biomolecules such as phospholipids or proteins. A brief introduction into various NMR spectroscopic techniques is given including chemical shift perturbation methods, NOE enhancement spectroscopy, relaxation time measurements and diffusion-ordered spectroscopy. How these NMR tools are used to address porphyrin–macromolecule interactions with respect to their function in biomedical applications is the central point of the current review.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4331
Author(s):  
David B. Hobart ◽  
Michael A. G. Berg ◽  
Hannah M. Rogers ◽  
Joseph S. Merola

The reaction of palladium(II) acetate with acyclic amino acids in acetone/water yields square planar bis-chelated palladium amino acid complexes that exhibit interesting non-covalent interactions. In all cases, complexes were examined by multiple spectroscopic techniques, especially HRMS (high resolution mass spectrometry), IR (infrared spectroscopy), and 1H NMR (nuclear magnetic resonance) spectroscopy. In some cases, suitable crystals for single crystal X-ray diffraction were able to be grown and the molecular structure was obtained. The molecular geometries of the products are discussed. Except for the alanine complex, all complexes incorporate water molecules into the extended lattice and exhibit N-H···O and/or O···(HOH)···O hydrogen bonding interactions. The non-covalent interactions are discussed in terms of the extended lattice structures exhibited by the structures.


Foods ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 360 ◽  
Author(s):  
Chun-Min Ma ◽  
Xin-Huai Zhao

The non-covalent interactions between a commercial whey protein isolate (WPI) and two bioactive polyphenols galangin and genistein were studied at pH 6.8 via the multi-spectroscopic assays and molecular docking. When forming these WPI-polyphenol complexes, whey proteins had changed secondary structures while hydrophobic interaction was the major driving force. Detergent sodium dodecyl sulfate destroyed the hydrophobic interaction and thus decreased apparent binding constants of the WPI-polyphenol interactions. Urea led to hydrogen-bonds breakage and protein unfolding, and therefore increased apparent binding constants. Based on the measured apparent thermodynamic parameters like ΔH, ΔS, ΔG, and donor-acceptor distance, galangin with more planar stereochemical structure and random B-ring rotation showed higher affinity for WPI than genistein with location isomerism and twisted stereochemical structure. The molecular docking results disclosed that β-lactoglobulin of higher average hydrophobicity had better affinity for the two polyphenols than α-lactalbumin of lower average hydrophobicity while β-lactoglobulin possessed very similar binding sites to the two polyphenols. It is concluded that polyphenols might have different non-covalent interactions with food proteins, depending on the crucial polyphenol structures and protein hydrophobicity.


2020 ◽  
Author(s):  
Kristian Kříž ◽  
Martin Nováček ◽  
Jan Řezáč

The new R739×5 data set from the Non-Covalent Interactions Atlas series (www.nciatlas.org) focuses on repulsive contacts in molecular complexes, covering organic molecules, sulfur, phosphorus, halogens and noble gases. Information on the repulsive parts of the potential energy surface is crucial for the development of robust empirically parametrized computational methods. We use the new data set of highly accurate CCSD(T)/CBS interaction energies to test existing DFT and semiempirical quantum-mechanical methods. On the example of the PM6 method, we analyze the source of the error and its relation to the difficulties in the description of conformational energies, and we also devise an immediately applicable correction that fixes the most serious uncorrected issues previously encountered in practical calculations.


2018 ◽  
Vol 14 ◽  
pp. 1482-1490 ◽  
Author(s):  
Ganna Gryn’ova ◽  
Clémence Corminboeuf

Non-covalent interactions between neutral, sterically hindered organic molecules generally involve a strong stabilizing contribution from dispersion forces that in many systems turns the ‘steric repulsion’ into a ‘steric attraction’. In addition to London dispersion, such systems benefit from electrostatic stabilization, which arises from a short-range effect of charge penetration and gets bigger with increasing steric bulk. In the present work, we quantify this contribution for a diverse set of molecular cores, ranging from unsubstituted benzene and cyclohexane to their derivatives carrying tert-butyl, phenyl, cyclohexyl and adamantyl substituents. While the importance of electrostatic interactions in the dimers of sp2-rich (e.g., π-conjugated) cores is well appreciated, less polarizable assemblies of sp3-rich systems with multiple short-range CH···HC contacts between the bulky cyclohexyl and adamantyl moieties are also significantly influenced by electrostatics. Charge penetration is drastically larger in absolute terms for the sp2-rich cores, but still has a non-negligible effect on the sp3-rich dimers, investigated herein, both in terms of their energetics and equilibrium interaction distances. These results emphasize the importance of this electrostatic effect, which has so far been less recognized in aliphatic systems compared to London dispersion, and are therefore likely to have implications for the development of force fields and methods for crystal structure prediction.


2020 ◽  
Author(s):  
Jan Řezáč

The Non-Covalent Interactions Atlas (www.nciatlas.org) aims to provide a new generation of benchmark data sets for non-covalent interactions. The HB300SPX data set presented here extends the coverage of hydrogen bonds to phosphorus, sulfur and halogens up to iodine. It is again complemented by a set of dissociation curves, HB300SPX×10. The new data make it possible to analyze the transferability of the parametrization of e.g. dispersion corrections for DFT from simple organic molecules to a broader chemical space. The HB300SPX×10 has also been used for the extension of the parametrization of hydrogen-bonding corrections in the semiempirical PM6-D3H4X and DFTB3-D3H5 methods to additional elements.<br>


2020 ◽  
Author(s):  
Peifa Wei ◽  
Zheng Zheng ◽  
Junyi Gong ◽  
Jun Zhang ◽  
Herman H.-Y. Sung ◽  
...  

Chemists are always seeking new methods to construct porous lattice frameworks using simple motifs as the impetus. Different from the extensively reported frameworks which were stabilized by extended bonding, porous crystals of discrete organic molecules is an emerging area of porous materials with dynamic and flexible conformation, consisting exclusively of non-covalent interactions. Herein we report geometrically simple linear molecule that assemble into a supramolecular nano-tunnel through synergy of anionic trident and multiple intermolecular pi-pi stacking interactions. The nano-tunnel crystal exhibit exceptional chemical stability in concentrated HCl and NaOH aqueous solutions, which is rarely been seen in supramolecular organic frameworks and often related to designed extensive hydrogen bonding interactions. Upon thermal treatment, the formed nano-tunnel crystals go through multistage single-crystal-to-single-crystal phase transformations accompanied by thermosalient effect. Aggregation-induced emission joins with the adaptive pores render the crystals with responsive fluorescent change from blue to yellow and visible self-healing porosity transformation upon being stimulated. Furthermore, the desolvated pores exhibit highly selective CO2 adsorption at ambient temperature. <br>


2020 ◽  
Author(s):  
Kristian Kříž ◽  
Martin Nováček ◽  
Jan Řezáč

The new R739×5 data set from the Non-Covalent Interactions Atlas series (www.nciatlas.org) focuses on repulsive contacts in molecular complexes, covering organic molecules, sulfur, phosphorus, halogens and noble gases. Information on the repulsive parts of the potential energy surface is crucial for the development of robust empirically parametrized computational methods. We use the new data set of highly accurate CCSD(T)/CBS interaction energies to test existing DFT and semiempirical quantum-mechanical methods. On the example of the PM6 method, we analyze the source of the error and its relation to the difficulties in the description of conformational energies, and we also devise an immediately applicable correction that fixes the most serious uncorrected issues previously encountered in practical calculations.


2015 ◽  
Vol 229 (10-12) ◽  
Author(s):  
Yasser M. Riyad ◽  
Christian Laube ◽  
Sergej Naumov ◽  
Ralf Hermann ◽  
Bernd Abel

AbstractIt is well known in supramolecular chemistry that cyclodextrin host molecules (CDs) are capable of including and binding guest molecules in their hydrophobic cavities via non-covalent interactions. The unique recognition capability of CDs depends on their inherent asymmetric cavities. We explored here the impacts of the chiral recognition of excited triplet state of guest 1,1′–Binaphthyl–2,2′–diylhydrogenphosphate (BNP) enantiomers by host native


Sign in / Sign up

Export Citation Format

Share Document