qinzhou bay
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 12)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Yao Zhang ◽  
Xianwei Meng ◽  
Peng Xia ◽  
Zhen Li

Mangroves, a blue carbon ecosystem between land and ocean in the (sub)tropics, are sensitive to changes in climate and the sea level. It is imperative to reconstruct the historical dynamics of their development to predict the fate of mangrove ecosystems in the backdrop of rapid global changes. This study analyzes records of the sources of organic matter from sediment core Q43 of Qinzhou Bay in tropical China by using the endmember mixing model based on stable organic carbon isotopes and C/N ratio. Mangrove-derived organic matter (MOM) is regarded as a reliable indicator for reconstructing the historical development of mangroves. The variations in MOM in Qinzhou Bay over the past ∼3,000 cal yr BP indicate that mangrove forests underwent two periods of flourishment: ∼2,200–1,750 cal yr BP and ∼1,370–600 cal yr BP, as well as three periods of deterioration: ∼3,000–2,200 cal yr BP, ∼1,750–1,370 cal yr BP, and ∼600–0 cal yr BP. Of factors that might have been influential, changes in the relative sea level and the regional hydrological environment (e.g., seawater temperature, salinity, and hydrodynamic conditions) did not appear to have notable effects on mangrove flourishing/degradation. However, climate change, especially the variation in air temperature, formed the primary factor controlling mangrove development. The stages of mangrove flourishing/deterioration corresponded to the warm/cold periods of the climate, respectively. Noteworthy is that the rapid rise in air temperature during the Anthropocene warm period should have promoted mangrove development, but the increasing intensity of human activity has reversed this tendency leading to the degradation of mangroves.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1392
Author(s):  
Chao Cao ◽  
Feng Cai ◽  
Hongshuai Qi ◽  
Yongling Zheng ◽  
Huiquan Lu

Human activities for exploitation and utilization of coastal zones have transformed coastline morphology and severely changed regional flow fields, underwater topography, and sediment distribution in the sea. In this study, single-beam bathymetry coupled with sediment sampling and analysis was carried out to ascertain submarine topography, geomorphology and sediment distribution patterns, and explore sediment provenance in Qinzhou Bay, China. The results show the following: (1) the underwater topography in Qinzhou Bay is complex and variable, with water depths in the range of 0–20 m. It can be divided into four underwater topographic zones (the central (outer Qinzhou Bay), eastern (Sanniang Bay), western (east of Fangcheng Port), and southern (outside of the bay) parts); (2) based on geomorphological features, the study area comprises four major submarine geomorphological units (i.e., tide-dominated delta, tidal sand ridge group, tidal scour troughs, and underwater slope) and two intertidal geomorphological units (i.e., tidal flat and abrasion platforms); (3) sandy sediments are widely present in Qinzhou Bay, accounting for 70% of the total sediments. From the mouth of the Maowei Sea to the central and northern part of Qinzhou Bay, the sediments gradually become coarser, shifting from sandy mud to muddy sand, and then to fine sand and medium–coarse sand, especially inside the trench. The detrital minerals contained in the sediments mainly consist of quartz, feldspar, ilmenite, leucosphenite, tourmaline, and detrital minerals, whereas the clay minerals are dominated by kaolinite, followed by illite and smectite. The sediment provenance is mainly terrigenous input from near-source river. With sea reclamation and dam construction, outer Qinzhou Bay has experienced enormous morphological variation of its coastline. Human activities for exploitation and utilization of coastal zones have transformed coastline morphology and severely changed regional flow fields, underwater topography, and sediment distribution in the sea. Together with the channel effect where the velocity of ebb tide is greater than that of flood tide, the underwater topography is characterized by increased scale and height difference of troughs and ridges as well as enhanced offshore deposition.


2021 ◽  
Vol 13 (9) ◽  
pp. 4649
Author(s):  
Ze-Lin Na ◽  
Huan-Mei Yao ◽  
Hua-Quan Chen ◽  
Yi-Ming Wei ◽  
Ke Wen ◽  
...  

Chlorophyll-a (Chl-a) concentration is a measure of phytoplankton biomass, and has been used to identify ‘red tide’ events. However, nearshore waters are optically complex, making the accurate determination of the chlorophyll-a concentration challenging. Therefore, in this study, a typical area affected by the Phaeocystis ‘red tide’ bloom, Qinzhou Bay, was selected as the study area. Based on the Gaofen-1 remote sensing satellite image and water quality monitoring data, the sensitive bands and band combinations of the nearshore Chl-a concentration of Qinzhou Bay were screened, and a Qinzhou Bay Chl-a retrieval model was constructed through stepwise regression analysis. The main conclusions of this work are as follows: (1) The Chl-a concentration retrieval regression model based on 1/B4 (near-infrared band (NIR)) has the best accuracy (R2 = 0.67, root-mean-square-error = 0.70 μg/L, and mean absolute percentage error = 0.23) for the remote sensing of Chl-a concentration in Qinzhou Bay. (2) The spatiotemporal distribution of Chl-a in Qinzhou Bay is varied, with lower concentrations (0.50 μg/L) observed near the shore and higher concentrations (6.70 μg/L) observed offshore, with a gradual decreasing trend over time (−0.8).


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ruixuan Wang ◽  
Bing Li ◽  
Li Zhang ◽  
Yuee Hou ◽  
Huajian Lin ◽  
...  

The oyster is one of the most abundantly harvested shellfish in the world. To explore the impact of salinity on antibiotic-resistant bacteria (ARB) and the microbial community associated with farmed oysters, oysters were taken from high-, medium-, and low-salinity zones (labeled HS, MS, and LS, respectively) in Qinzhou Bay of Beibu Gulf, China. ARB were tested with the Kirby–Bauer method. Species of ARB were confirmed by 16 S rDNA analysis. Microbial communities were analyzed by high-throughput sequencing technology. The results indicate that HS-derived ARB (>60%) resisted β-lactams and aminoglycosides and that LS-derived strains resisted macrolide and tetracyclines. All strains resisted 4 or more antibiotics. A total of 542 operational taxonomic units were detected in the samples, with Shewanella, Vibrio, and Endozoicomonas being the dominant genera (>80%), although distributed differently among the different salinity samples. The oyster microbial richness ranked as MS > LS > HS. This study provides an important reference for future efforts to explain factors or mechanisms underlying correlations between ARB, the microbiome, and salinity and thus the potential health of oysters in this region.


Author(s):  
Chao Cao ◽  
Feng Cai ◽  
Hongshuai Qi ◽  
Huiquan Lu ◽  
Yongling Zheng ◽  
...  

Human activities for exploitation and utilization of coastal zones have transformed coastline morphology and severely changed regional flow fields, underwater topography, and sediment distribution in the sea. In this study, single-beam bathymetry coupled with sediment sampling and analysis was carried out to ascertain submarine topography, geomorphology and sediment distribution patterns and explore sediment provenance in Qinzhou Bay, China. The results show the following. 1) The underwater topography in Qinzhou Bay is complex and variable, with water depths in the range of 0–20 m. It can be divided into four underwater topographic zones: the central (outer Qinzhou Bay), eastern (Sanniang Bay), western (east of Fangcheng Port), and southern (outside of the bay) parts. 2) Based on geomorphological features, the study area comprises four major submarine geomorphological units (i.e., tide-dominated delta, tidal sand ridge group, tidal scour troughs, and underwater slope) and two intertidal geomorphological units (i.e., tidal flat and abrasion platforms). 3) Sandy sediments are widely present in Qinzhou Bay, accounting for 70% of the total sediments. From the mouth of the Maowei Sea to the offshore, the sediments gradually become coarser, shifting from sandy mud to muddy sand, and then to fine sand and medium–coarse sand. The detrital minerals contained in the sediments mainly consist of quartz, feldspar, debris, ilmenite, leucosphenite, and tourmaline, whereas the clay minerals are dominated by kaolinite, followed by illite and smectite. The sediment provenance is mainly terrigenous input from near-source rivers. With sea reclamation and dam construction, outer Qinzhou Bay has experienced enormous morphological variation of its coastline. Together with the channel effect where the velocity of ebb tide is greater than that of flood tide, the underwater topography is characterized by increased scale and height difference of troughs and ridges as well as enhanced offshore deposition.


Author(s):  
Chao Cao ◽  
Feng Cai ◽  
Hongshuai Qi ◽  
Huiquan Lu ◽  
Yongling Zheng ◽  
...  

Human activities for exploitation and utilization of coastal zones have transformed coastline morphology and severely changed regional flow fields, underwater topography, and sediment distribution in the sea. In this study, single-beam bathymetry coupled with sediment sampling and analysis was carried out to ascertain submarine topography, geomorphology and sediment distribution patterns and explore sediment provenance in Qinzhou Bay, China. The results show the following. 1) The underwater topography in Qinzhou Bay is complex and variable, with water depths in the range of 0–20 m. It can be divided into four underwater topographic zones: the central (outer Qinzhou Bay), eastern (Sanniang Bay), western (east of Fangcheng Port), and southern (outside of the bay) parts. 2) Based on geomorphological features, the study area comprises four major submarine geomorphological units (i.e., tide-dominated delta, tidal sand ridge group, tidal scour troughs, and underwater slope) and two intertidal geomorphological units (i.e., tidal flat and abrasion platforms). 3) Sandy sediments are widely present in Qinzhou Bay, accounting for 70% of the total sediments. From the mouth of the Maowei Sea to the offshore, the sediments gradually become coarser, shifting from sandy mud to muddy sand, and then to fine sand and medium–coarse sand. The detrital minerals contained in the sediments mainly consist of quartz, feldspar, debris, ilmenite, leucosphenite, and tourmaline, whereas the clay minerals are dominated by kaolinite, followed by illite and smectite. The sediment provenance is mainly terrigenous input from near-source rivers. With sea reclamation and dam construction, outer Qinzhou Bay has experienced enormous morphological variation of its coastline. Together with the channel effect where the velocity of ebb tide is greater than that of flood tide, the underwater topography is characterized by increased scale and height difference of troughs and ridges as well as enhanced offshore deposition.


2020 ◽  
Vol 39 (2) ◽  
pp. 79-88
Author(s):  
Xing Huang ◽  
Xueping Wang ◽  
Xiuzhen Li ◽  
Zhongzheng Yan ◽  
Yongguang Sun

Sign in / Sign up

Export Citation Format

Share Document