motion coordination
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 37)

H-INDEX

22
(FIVE YEARS 1)

2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110709
Author(s):  
Mingfang Chen ◽  
Kangkang Hu ◽  
Yongxia Zhang ◽  
Fengping Qi

The parallel leg of the quadruped robot has good structural stiffness, accurate movement, and strong bearing capacity, but it is complicated to control. To solve this problem, a series connection of parallel legs (SCPL) was proposed, as well as a control strategy combined with the central pattern generator (CPG). With the planar 5R parallel leg as the research object, the SCPL analysis method was used to analyze the leg structure. The topology of CPG network was built with the Hopf oscillator as the unit model, and the CPG was the core to model the robot control system. By continuously adjusting the parameters in the CPG control system and changing the connection weight, and the smooth transition between gaits was realized. The simulation results show that the SCPL analysis method can be effectively used in the analysis of parallel legs, and the control system can realize the smooth transition between gaits, which verifies the feasibility and effectiveness of the proposed control strategy.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012048
Author(s):  
Yudong Lai ◽  
Shiping Sun ◽  
Xianzhong Yu ◽  
Hexing Wu ◽  
Huang Hui ◽  
...  

Abstract This paper presents an integral strength checking method to solve the problem that the step-by-step strength checking method cannot check the strength of metal parts in the rubber mounting system of light truck powertrain. By establishing an integral finite element model including powertrain and rubber mount system and considering the rubber bearing and force transfer mode, the motion coordination and overall analysis of mount system and powertrain are realized. The calculation results show that the proposed method can easily and accurately complete the strength check of metal parts of the mounting system, which provides a reference for the structural design of the mounting system.


2021 ◽  
Vol 8 ◽  
Author(s):  
Philip Malloy ◽  
Donald Dr. Neumann ◽  
Anne Leung ◽  
Kristof Kipp

The primary aim of this study was to determine if the three-dimensional (3D) hip joint motion coordination during gait changes after arthroscopic surgery for femoroacetabular impingement syndrome (FAIS). Three-dimensional hip joint kinematic data were collected with a 12-camera motion capture system. Five trials of level walking were collected preoperatively (PRE) and at 1-year postoperatively (POST) in 8 patients diagnosed with FAIS and at a single time point in 8 healthy controls. Planar covariation analysis was performed to quantify the 3D hip joint motion coordination strategy during gait. Independent sample's t-test were used to determine differences between the FAIS group at the preoperative time point (PRE) and healthy controls. Paired samples t-tests were used to determine differences between the PRE and POST time points within the FAIS group. The %VAF by PC 1 for the FAIS group at the PRE time point was significantly less than that of healthy controls (PRE: 77.2 ± 8.7% vs. Control: 96.1 ± 2.8%; p = 0.0001), and the % VAF of the second PC (PC2) was significantly greater [PRE: 22.8 (8.7)%; Control: 3.9 (2.8)%; p = 0.0001]. No differences in %VAF were found between the PRE and POST time points within the FAIS group for PC1 [PRE: 77.2 (8.7)% vs. POST: 79.3 (11.1)%; p = 0.472] or PC2 [PRE: 22.7 (8.7)%; POST: 20.7 (11.1)%; p = 0.472]. Significant differences in the plane specific contribution to the 3D motion coordination strategy were found between the FAIS patients at the PRE and POST time points for the sagittal plane [PRE: 5.6 (2.7) vs. POST: 0.91 (6.1); p = 0.012] and frontal plane [PRE: −10.4 (2.2) and −1.5 (6.3); p = 0.005]. Patients with FAIS demonstrated a more complex coordination strategy of 3D hip joint motion than controls and this strategy remains unchanged after hip arthroscopic surgery despite changes in the plane specific contribution to this strategy. These findings indicate that motor control impairments in FAIS patients do exist and seem to persist for at least 1 year after hip arthroscopic surgery.


2021 ◽  
Vol 288 (1954) ◽  
pp. 20210998
Author(s):  
Nobuaki Mizumoto ◽  
Sang-Bin Lee ◽  
Gabriele Valentini ◽  
Thomas Chouvenc ◽  
Stephen C. Pratt

In collective animal motion, coordination is often achieved by feedback between leaders and followers. For stable coordination, a leader's signals and a follower's responses are hypothesized to be attuned to each other. However, their roles are difficult to disentangle in species with highly coordinated movements, hiding potential diversity of behavioural mechanisms for collective behaviour. Here, we show that two Coptotermes termite species achieve a similar level of coordination via distinct sets of complementary leader–follower interactions. Even though C. gestroi females produce less pheromone than C. formosanus , tandem runs of both species were stable. Heterospecific pairs with C. gestroi males were also stable, but not those with C. formosanus males. We attributed this to the males' adaptation to the conspecific females; C. gestroi males have a unique capacity to follow females with small amounts of pheromone, while C. formosanus males reject C. gestroi females as unsuitable but are competitive over females with large amounts of pheromone. An information-theoretic analysis supported this conclusion by detecting information flow from female to male only in stable tandems. Our study highlights cryptic interspecific variation in movement coordination, a source of novelty for the evolution of social interactions.


2021 ◽  
Vol 13 (6) ◽  
pp. 168781402110284
Author(s):  
Xuechao Chen ◽  
Wenxi Liao ◽  
Zhangguo Yu ◽  
Haoxiang Qi ◽  
Xinyang Jiang ◽  
...  

Jumping capability of humanoid robots can be considered as one of the cruxes to improve the performance of future humanoid robot applications. This paper presents an optimization method on a three-linkage system to achieve a jumping behavior, which is followed by the clarification of the mathematical modeling and motor-joint model with practical factors considered. In consideration of the constraints of ZMP and the performance of the motor, the output power of the joint motors is maximized as much as possible to achieve a higher height. Finally, the optimization method is verified by the simulation and experiment. Different from other electric driven robots, which take the output power of the joint as the constraint, we maximize the output power of the joint to optimize the hopping performance of the robot. Realizing dynamic jumping of humanoid robots can also provide a solid foundation for further research on running, which can greatly enhance the environmental adaptability.


2021 ◽  
Vol 109 ◽  
pp. 102294
Author(s):  
Yunlong Zhao ◽  
Xiaoping Liu ◽  
Shaobo Wu ◽  
Gang Wang

Sign in / Sign up

Export Citation Format

Share Document