red fluorescence protein
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 10 (2) ◽  
pp. e22010212554
Author(s):  
Grace Estefanía Uribe Hurtado ◽  
William Fernando Viera Arroyo ◽  
Álvaro Xavier Sampedro Lema ◽  
Kang Jin Cho ◽  
Alicia Beatriz Villavicencio Pazos ◽  
...  

Avocado (Persea americana) is a fruit crop of economic importance in Ecuador. Currently, a low incidence of Phytophthora cinnamomi has been reported, however, there are other soil pathogens that can affect this crop, even at the initial stages of plant multiplication (nursery), for this reason the use of rootstocks that tolerate these biotic adversities is recommended. In this research, the fungus Fusarium oxysporum was isolated from roots of nursery seedlings with symptoms of necrosis. In addition, an isolate of this pathogenic fungus modified with a strain of Agrobacterium tumefaciens was used to determine the infection of F. oxysporum in the roots of the Fuerte (commercial) and Criollo (local) cultivars. The results allowed to infer that the cultivar Criollo presented a greater tolerance to F. oxysporum than the cultivar Fuerte, which corroborates its use as a rootstock for commercial avocado varieties. Furthermore, to our knowledge, this is the first report of F. oxysporum affecting avocado nursery seedlings in Ecuador.


2020 ◽  
Vol 21 (19) ◽  
pp. 7426
Author(s):  
Giulia Breveglieri ◽  
Salvatore Pacifico ◽  
Cristina Zuccato ◽  
Lucia Carmela Cosenza ◽  
Shaiq Sultan ◽  
...  

The screening of chemical libraries based on cellular biosensors is a useful approach to identify new hits for novel therapeutic targets involved in rare genetic pathologies, such as β-thalassemia and sickle cell disease. In particular, pharmacologically mediated stimulation of human γ-globin gene expression, and increase of fetal hemoglobin (HbF) production, have been suggested as potential therapeutic strategies for these hemoglobinopathies. In this article, we screened a small chemical library, constituted of 150 compounds, using the cellular biosensor K562.GR, carrying enhanced green fluorescence protein (EGFP) and red fluorescence protein (RFP) genes under the control of the human γ-globin and β-globin gene promoters, respectively. Then the identified compounds were analyzed as HbF inducers on primary cell cultures, obtained from β-thalassemia patients, confirming their activity as HbF inducers, and suggesting these molecules as lead compounds for further chemical and biological investigations.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yingshuo Hou ◽  
Siyu Chen ◽  
Jianjun Wang ◽  
Guizhen Liu ◽  
Sheng Wu ◽  
...  

Abstract Background Corynebacterium ammoniagenes is an important industrial organism that is widely used to produce nucleotides and the potential for industrial production of coenzyme A by C. ammoniagenes ATCC 6871 has been shown. However, the yield of coenzyme A needs to be improved, and the available constitutive promoters are rather limited in this strain. Results In this study, 20 putative DNA promoters derived from genes with high transcription levels and 6 promoters from molecular chaperone genes were identified. To evaluate the activity of each promoter, red fluorescence protein (RFP) was used as a reporter. We successfully isolated a range of promoters with different activity levels, and among these a fragment derived from the upstream sequence of the 50S ribosomal protein L21 (Prpl21) exhibited the strongest activity among the 26 identified promoters. Furthermore, type III pantothenate kinase from Pseudomonas putida (PpcoaA) was overexpressed in C. ammoniagenes under the control of Prpl21, CoA yield increased approximately 4.4 times. Conclusions This study provides a paradigm for rational isolation of promoters with different activities and their application in metabolic engineering. These promoters will enrich the available promoter toolkit for C. ammoniagenes and should be valuable in current platforms for metabolic engineering and synthetic biology for the optimization of pathways to extend the product spectrum or improve the productivity in C. ammoniagenes ATCC 6871 for industrial applications.


2019 ◽  
Author(s):  
Yingshuo Hou ◽  
Siyu Chen ◽  
Jianjun Wang ◽  
Guizhen Liu ◽  
Sheng Wu ◽  
...  

Abstract Background : Corynebacterium ammoniagenes is an important industrial organism that is widely used to produce nucleotides and the potential for industrial production of coenzyme A by C. ammoniagenes ATCC 6871 has been shown. However, the yield of coenzyme A needs to be improved, and the available constitutive promoters are rather limited in this strain. Results : In this study, 20 putative DNA promoters derived from genes with high transcription levels and 6 promoters from molecular chaperone genes were identified. To evaluate the activity of each promoter, red fluorescence protein (RFP) was used as a reporter. We successfully isolated a range of promoters with different activity levels, and among these a fragment derived from the upstream sequence of the 50S ribosomal protein L21 (P rpl21 ) exhibited the strongest activity among the 26 identified promoters. Furthermore, type III pantothenate kinase from Pseudomonas putida ( Pp coaA) was overexpressed in C. ammoniagenes under the control of P rpl21 , CoA yield increased approximately 4.4 times. Conclusions : This study provides a paradigm for rational isolation of promoters with different activities and their application in metabolic engineering. These promoters will enrich the available promoter toolkit for C. ammoniagenes and should be valuable in current platforms for metabolic engineering and synthetic biology for the optimization of pathways to extend the product spectrum or improve the productivity in C. ammoniagenes ATCC 6871 for industrial applications.


2019 ◽  
Author(s):  
Yingshuo Hou ◽  
Siyu Chen ◽  
Jianjun Wang ◽  
Guizhen Liu ◽  
Sheng Wu ◽  
...  

Abstract Background : Corynebacterium ammoniagenes is an important industrial organism that is widely used to produce nucleotides and the potential for industrial production of coenzyme A by C. ammoniagenes ATCC 6871 has been shown. However, the yield of coenzyme A needs to be improved, and the available constitutive promoters are rather limited in this strain. Results : In this study, 20 putative DNA promoters derived from genes with high transcription levels and 6 promoters from molecular chaperone genes were identified. To evaluate the activity of each promoter, red fluorescence protein (RFP) was used as a reporter. We successfully isolated a range of promoters with different activity levels, and among these a fragment derived from the upstream sequence of the 50S ribosomal protein L21 (P rpl21 ) exhibited the strongest activity among the 26 identified promoters. Furthermore, type III pantothenate kinase from Pseudomonas putida ( Pp coaA) was overexpressed in C. ammoniagenes under the control of P rpl21 , CoA yield increased approximately 4.4 times. Conclusions : This study provides a paradigm for rational isolation of promoters with different activities and their application in metabolic engineering. These promoters will enrich the available promoter toolkit for C. ammoniagenes and should be valuable in current platforms for metabolic engineering and synthetic biology for the optimization of pathways to extend the product spectrum or improve the productivity in C. ammoniagenes ATCC 6871 for industrial applications.


2019 ◽  
Author(s):  
Yingshuo Hou ◽  
Siyu Chen ◽  
Jianjun Wang ◽  
Guizhen Liu ◽  
Sheng Wu ◽  
...  

Abstract Background:Corynebacterium ammoniagenes is an important industrial organism that is widely used to produce nucleotides and the potential for industrial production of coenzyme A by Corynebacterium ammoniagenes ATCC 6871 has been shown. However, the yield of coenzyme A needs to be improved and the available constitutive promoters are rather limited in this strain. Results:In this study, 20 putative DNA promoters derived from genes with high transcription levels and 6 promoters from molecular chaperone genes were identified. To evaluate the activity of each promoter, red fluorescence protein (RFP) was used as a reporter. We successfully isolated a range of promoters with different activity levels resulting in different fluorescent intensities. A fragment derived from the upstream sequence of the 50S ribosomal protein L21 (Prpl21) exhibited the strongest activity among the 26 identified promoters. Furthermore, type III pantothenate kinase from Pseudomonas putida (PpcoaA) was overexpressed in C. ammoniagenes under the control of Prpl21, CoA yield increased approximately 4.1 times. Conclusions:This study provides a paradigm for rational isolation of promoters with different activities and their application in metabolic engineering. These promoters will enrich the available promoter toolkit for C. ammoniagenes and should be valuable in current platforms for metabolic engineering and synthetic biology for the optimization of pathways to extend the product spectrum or improve the productivity in C. ammoniagenes ATCC 6871 for industrial applications.


2018 ◽  
Vol 315 (5) ◽  
pp. F1449-F1464 ◽  
Author(s):  
Taihei Suzuki ◽  
Diana G. Eng ◽  
Aaron D. McClelland ◽  
Jeffrey W. Pippin ◽  
Stuart J. Shankland

Under certain circumstances, podocytes can be partially replaced following their loss in disease. The inability of podocytes to proliferate suggests that replacement derives from other cell types. Because neural/glial antigen 2 (NG2)-expressing cells can serve as progenitors in other organs and because herein we showed increased NG2 staining in podocytes following their loss in experimental focal segmental glomerulosclerosis, we used lineage tracing in NG2-CreER tdTomato mice to test the hypothesis that partial podocyte replacement might derive from this cell population. The percentage of glomeruli with red fluorescence protein (RFP)-labeled NG2 cells increased following podocyte depletion, which was augmented by enalapril. However, BrdU was not detected in RFP-labeled cells, consistent with the migration of these cells to the glomerulus. Within glomeruli, RFP-labeled cells did not coexpress podocyte proteins (p57, synaptopodin, nephrin, or podocin) but did coexpress markers for mesangial (α8 integrin, PDGFβ receptor) and parietal epithelial cells (PAX8, src-suppressed C-kinase substrate). These results suggest that following podocyte depletion, cells of NG2 lineage do not serve as adult podocyte progenitors but have the ability to transdifferentiate to mesangial and parietal epithelial cell fates.


2018 ◽  
Vol 30 (1) ◽  
pp. 185
Author(s):  
H. J. Oh ◽  
M. J. Kim ◽  
G. A. Kim ◽  
E. M. N. Setyawan ◽  
S. H. Lee ◽  
...  

Neurodegenerative disorders, such as Alzheimer’s disease, affect neurons in large areas within the central nervous system. The selective expression of disease-causing and therapeutic genes in susceptible regions and cell types is critical to the generation of animal models. In our previous studies, we reported production of a transgenic dog by nuclear transfer using donor cells that had been stably transfected by vector containing the red fluorescence protein (RFP) and human synapsin I (SynI) promoter, a neuron-specific promoter. Here, we evaluated whether RFP expression in transgenic dog with SynI (SynI dog) had high neuronal specificity and strong transcriptional activity. For confirmation of neuron-specific RFP expression, tissue samples were obtained from a killed 4-year-old SynI dog. Quantification of RFP in heart, kidney, liver, lung, spleen, cerebrum, cerebrum, cerebellum, midbrain, hippocampus, peripheral nerves, skin, and spinal cord of SynI dog was analysed using ELISA (Cell Biolabs, San Diego, CA, USA). Moreover, the distribution of RFP activity in neural system of the SynI dog was determined by immunohistochemistry. The first antibody, rabbit polyclonal RFP antibody (1:200, ab62341, Abcam, Cambridge, MA, USA) was applied, and antibody labelling was visualised by incubation with avidin-biotinylated horseradish peroxidase complex (1:1,000; ABC Elite, Vector Laboratories, Burlingame, CA, USA). In the 4-year-old SynI dog, RFP was observed only in neuronal tissues including brain, spinal cord, and peripheral nerves, but was not detected in non-neuronal tissue such as heart, kidney, and skin. In addition, robust RFP expression was observed in the neurons of the peripheral nerve, spinal cord, and prefrontal cortex. In the hippocampus and cerebellum, the RFP-expressing cells appeared heterogeneous in hippocampus neurons and purkinje cells. In conclusion, we report that human SynI promoter is functional in neural cells of dogs. A neural specific-transgene expressed dog could be applied as a research tool in the study of neurodegenerative disorders. This research was supported by RDA (#PJ010928032017), Korea IPET (#316002-05-2-SB010), NRF (#2016R1D1A1B03932198), and Research Institute for Veterinary Science, the BK21 plus program.


Sign in / Sign up

Export Citation Format

Share Document