scholarly journals Variational Principles in Teleparallel Gravity Theories

Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 114
Author(s):  
Manuel Hohmann

We study the variational principle and derivation of the field equations for different classes of teleparallel gravity theories, using both their metric-affine and covariant tetrad formulations. These theories have in common that, in addition to the tetrad or metric, they employ a flat connection as additional field variable, but dthey iffer by the presence of absence of torsion and nonmetricity for this independent connection. Besides the different underlying geometric formulation using a tetrad or metric as fundamental field variable, one has different choices to introduce the conditions of vanishing curvature, torsion, and nonmetricity, either by imposing them a priori and correspondingly restricting the variation of the action when the field equations are derived, or by using Lagrange multipliers. Special care must be taken, since these conditions form non-holonomic constraints. Here, we explicitly show that all of the aforementioned approaches are equivalent, and that the same set of field equations is obtained, independently of the choice of the geometric formulation and variation procedure. We further discuss the consequences arising from the diffeomorphism invariance of the gravitational action, and show how they establish relations between the gravitational field equations.

Author(s):  
Manuel Hohmann

We consider the notion of cosmological symmetry, i.e. spatial homogeneity and isotropy, in the field of teleparallel gravity and geometry, and provide a complete classification of all homogeneous and isotropic teleparallel geometries. We explicitly construct these geometries by independently employing three different methods, and prove that all of them lead to the same class of geometries. Further, we derive their properties, such as the torsion tensor and its irreducible decomposition, as well as the transformation behavior under change of the time coordinate, and derive the most general cosmological field equations for a number of teleparallel gravity theories. In addition to homogeneity and isotropy, we extend the notion of cosmological symmetry to also include spatial reflections, and find that this further restricts the possible teleparallel geometries. This work answers an important question in teleparallel cosmology, in which so far only particular examples of cosmologically symmetric solutions had been known, but it was unknown whether further solutions can be constructed.


Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 67
Author(s):  
Salim Harun Shekh ◽  
Pedro H. R. S. Moraes ◽  
Pradyumn Kumar Sahoo

In the present article, we investigate the physical acceptability of the spatially homogeneous and isotropic Friedmann–Lemâitre–Robertson–Walker line element filled with two fluids, with the first being pressureless matter and the second being different types of holographic dark energy. This geometric and material content is considered within the gravitational field equations of the f(T,B) (where T is the torsion scalar and the B is the boundary term) gravity in Hubble’s cut-off. The cosmological parameters, such as the Equation of State (EoS) parameter, during the cosmic evolution, are calculated. The models are stable throughout the universe expansion. The region in which the model is presented is dependent on the real parameter δ of holographic dark energies. For all δ≥4.5, the models vary from ΛCDM era to the quintessence era.


2017 ◽  
Vol 32 (15) ◽  
pp. 1750080 ◽  
Author(s):  
Emre Dil

In this study, to investigate the very nature of quantum black holes, we try to relate three independent studies: (q, p)-deformed Fermi gas model, Verlinde’s entropic gravity proposal and Strominger’s quantum black holes obeying the deformed statistics. After summarizing Strominger’s extremal quantum black holes, we represent the thermostatistics of (q, p)-fermions to reach the deformed entropy of the (q, p)-deformed Fermi gas model. Since Strominger’s proposal claims that the quantum black holes obey deformed statistics, this motivates us to describe the statistics of quantum black holes with the (q, p)-deformed fermions. We then apply the Verlinde’s entropic gravity proposal to the entropy of the (q, p)-deformed Fermi gas model which gives the two-parameter deformed Einstein equations describing the gravitational field equations of the extremal quantum black holes obeying the deformed statistics. We finally relate the obtained results with the recent study on other modification of Einstein equations obtained from entropic quantum corrections in the literature.


Sign in / Sign up

Export Citation Format

Share Document