faraday cup
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 33)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Zexian Cui ◽  
Qing Yang ◽  
Xiaoping Xia ◽  
Rui Wang ◽  
Magali Bonifacie ◽  
...  

Chlorine is a redox-sensitive and fluid-mobile element, and is involved in many geological processes. Apatite, a ubiquitous accessory mineral in mafic to felsic rocks, is the most-studied mineral in chlorine...


Author(s):  
David Kulla ◽  
Samuel A Lazerson ◽  
Sibylle Günter ◽  
Matthias Hirsch ◽  
Dirk Hartmann ◽  
...  

Abstract In light of measuring the fast ionized particle confinement in the stellarator Wendelstein 7-X, particles generated by the neutral beam injection system are simulated to determine the placement of an array of faraday-cup fast ion loss detectors. This array is important due to the localization of the loss pattern, which changes drastically with experimental parameters. The Monte Carlo codes BEAMS3D and ASCOT5 are used for the simulations, following the particles from injection to wall collision. Different magnetic configurations and plasma pressures are investigated in this manner, and a configuration suitable for measuring the loss fraction is found. It qualitatively reproduces the global losses, is installable in locations of current carbon wall-tiles and the individual detector output appears well-suited for experimental purposes.


2021 ◽  
Vol 5 (4) ◽  
pp. 198-210
Author(s):  
M. K. Dosbolayev ◽  
A. B. Tazhen ◽  
T. S. Ramazanov

This paper presents the experimental results on electron, ion temperatures and densities in a pulsed plasma accelerator. The values of electron densities and temperatures were computed using the methods of relative intensities of Hα and Hβ lines, Hβ Stark broadening, and the technique is based on Faraday cup beam current measurements. In this work, a linear optical spectrometer S-100 was used to acquire the emission spectra of hydrogen and air plasmas. In this spectrum, there are some lines due to Fe, Cu, N2, O2, and H2. The series of visible lines in the hydrogen atom spectrum are named the Balmer series. The spectral emissions of iron and copper occur throughout the gas breakdown and ignition of an arc discharge, during the erosion and sputtering of materials. The vacuum chamber and coaxial electrodes were made. The electron temperatures and densities in a pulsed plasma accelerator, measured via relative intensities of spectral lines and Stark broadening, at a charging voltage of a capacitor bank of 3 kV and a working gas pressure in a vacuum chamber of 40 mTorr, were 2.6 eV and 1.66 · 1016 cm−3 for hydrogen plasma. These results were compared with the Faraday cup beam current measurements. However, no match was found. Considering and analyzing this distinction, we concluded that the spectral method of plasma diagnostics provides more accurate results than electrical measurement. The theory of probe measurements can give approximate results in a moving plasma.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1520
Author(s):  
Alexander Tkach ◽  
Miguel Garcez ◽  
Paula M. Vilarinho

Electrostatically coated abrasives have drawn vast attention in many industrial applications. Therefore, influence of humidity on the electrical properties of α-SiC and α-Al2O3 abrasive powders with three μm-range particle sizes are here investigated using electrostatic charge and DC resistivity analysis. From the three particle size ranges used, 15–16 μm, 60–63 μm and 153–156 μm, the intermediate one (60–63 μm) is found to be associated with the highest charge values, measured using a double Faraday cup method, as well as the highest resistivity for both materials. However, comparing SiC and Al2O3 powders, the latter ones present about twice larger charges in dry and normal humidity states accompanied by several orders of magnitude larger resistivity. Under humid conditions all the powders reveal diminishing charge and resistivity values.


Author(s):  
Sergey Kondrashev ◽  
Edward Beebe ◽  
Takeshi Kanesue ◽  
Masahiro Okamura ◽  
Robert Scott

Abstract Picosecond lasers (ps-lasers) have significant advantages for the generation of low charge state ions compared to nanosecond lasers because the influence of heat conductivity on a solid target is almost negligible in the case of ps-laser ablation for laser pulse durations less than 10 ps. However, there is no comprehensive data on ion yields for different elements and target irradiation conditions for laser power densities at the target surface around and below 1013 W/cm2, which is of interest to our study of such plasmas as a source of low charge state ions for various applications, particularly for external injection of those ions into an Electron Beam Ion Source (EBIS). We investigated ion generation from Al, Ti, Cu, Nb and Ta target elements by a ps-laser with power densities in the range of 1011 – 1013 W/cm2 at the target surface. A ps-laser with 1.27 mJ maximum energy within an 8 ps pulse and repetition rate up to 400 Hz has been used to generate a laser-ablated plasma. Dependencies of ion current vs time, total charge of registered ions as well as ion kinetic energy distributions are characterized using a Faraday cup. Significant difference in ion current dynamics between first, second and following shots onto the same target spot was found for all five target elements. The total charge of ions registered by the Faraday cup increases linearly with increasing laser pulse energy and is almost independent of the target element and number of shots onto the same target spot for all five target elements studied. The results obtained give us a basis for specification and design of the source of low charge state ions for external injection into EBIS.


2021 ◽  
Vol 2058 (1) ◽  
pp. 012041
Author(s):  
A A Pryanichnikov ◽  
P B Zhogolev ◽  
A E Shemyakov ◽  
M A Belikhin ◽  
A P Chernyaev ◽  
...  

Abstract Proton radiography is one of the most important and actual areas of research that can significantly improve the quality and accuracy of proton therapy. Currently, the calculation of the proton range in patients receiving proton therapy is based on the conversion of Hounsfield CT units of the patient's tissues into the relative stopping power of protons. Proton radiography is able to reduce these uncertainties by directly measuring proton stopping power. The study demonstrates the possibility of Protom synchrotron-based proton therapy facilities to operate in a special mode which makes it possible to implement proton radiography. This work presents the status of the new low beam intensity extraction mode. The paper describes algorithms of low flux beam control, calibration procedures and experimental measurements. Measurements and calibration procedures were performed with certified Protom Faraday Cup, PTW Bragg Peak Chamber and specially designed experimental external.


Author(s):  
M. Usman Aslam Bhatti ◽  
Shazia Bashir ◽  
Asma Hayat ◽  
Khaliq Mahmood ◽  
Rana Ayub ◽  
...  

Author(s):  
Carla Winterhalter ◽  
Michele Togno ◽  
Konrad Pawel Nesteruk ◽  
Frank Emert ◽  
Serena Psoroulas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document