closed quantum system
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 1)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 27
Author(s):  
Jen-Tsung Hsiang ◽  
Bei-Lok Hu

After a brief summary of the four main veins in the treatment of decoherence and quantum to classical transition in cosmology since the 1980s, we focus on one of these veins in the study of quantum decoherence of cosmological perturbations in inflationary universe, the case when it does not rely on any environment. This is what ‘intrinsic’ in the title refers to—a closed quantum system, consisting of a quantum field which drives inflation. The question is whether its quantum perturbations, which interact with the density contrast giving rise to structures in the universe, decohere with an inflationary expansion of the universe. A dominant view which had propagated for a quarter of a century asserts yes, based on the belief that the large squeezing of a quantum state after a duration of inflation renders the system effectively classical. This paper debunks this view by identifying the technical fault-lines in its derivations and revealing the pitfalls in its arguments which drew earlier authors to this wrong conclusion. We use a few simple quantum mechanical models to expound where the fallacy originated: The highly squeezed ellipse quadrature in phase space cannot be simplified to a line, and the Wigner function cannot be replaced by a delta function. These measures amount to taking only the leading order in the relevant parameters in seeking the semiclassical limit and ignoring the subdominant contributions where quantum features reside. Doing so violates the bounds of the Wigner function, and its wave functions possess negative eigenvalues. Moreover, the Robertson-Schrödinger uncertainty relation for a pure state is violated. For inflationary cosmological perturbations, in addition to these features, entanglement exists between the created pairs. This uniquely quantum feature cannot be easily argued away. Indeed, it could be our best hope to retroduce the quantum nature of cosmological perturbations and the trace of an inflation field. All this points to the invariant fact that a closed quantum system, even when highly squeezed, evolves unitarily without loss of coherence; quantum cosmological perturbations do not decohere by themselves.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 514
Author(s):  
Raffaele Salvia ◽  
Vittorio Giovannetti

Given a closed quantum system, the states that can be reached with a cyclic process are those with the same spectrum as the initial state. Here we prove that, under a very general assumption on the Hamiltonian, the distribution of the mean extractable work is very close to a gaussian with respect to the Haar measure. We derive bounds for both the moments of the distribution of the mean energy of the state and for its characteristic function, showing that the discrepancy with the normal distribution is increasingly suppressed for large dimensions of the system Hilbert space.


2016 ◽  
Vol 25 (08) ◽  
pp. 1642009 ◽  
Author(s):  
David A. Craig

We review the application of the consistent (or decoherent) histories formulation of quantum theory to canonical loop quantum cosmology. Conventional quantum theory relies crucially on “measurements” to convert unrealized quantum potentialities into physical outcomes that can be assigned probabilities. In the early universe and other physical contexts in which there are no observers or measuring apparatus (or indeed, in any closed quantum system), what criteria determine which alternative outcomes may be realized and what their probabilities are? In the consistent histories formulation it is the vanishing of interference between the branch wave functions describing alternative histories — as determined by the system’s decoherence functional — that determines which alternatives may be assigned probabilities. We describe the consistent histories formulation and how it may be applied to canonical loop quantum cosmology, describing in detail the application to homogeneous and isotropic cosmological models with scalar matter. We show how the theory may be used to make definite physical predictions in the absence of “observers”. As an application, we demonstrate how the theory predicts that loop quantum models “bounce” from large volume to large volume, while conventional “Wheeler–DeWitt”-quantized universes are invariably singular. We also briefly indicate the relation to other work.


2014 ◽  
Vol 113 (14) ◽  
Author(s):  
Tiago B. Batalhão ◽  
Alexandre M. Souza ◽  
Laura Mazzola ◽  
Ruben Auccaise ◽  
Roberto S. Sarthour ◽  
...  

2014 ◽  
Vol 12 (04) ◽  
pp. 1450021
Author(s):  
Lauri Lehman

The mixing process of discrete-time quantum walks on one-dimensional lattices is revisited in a setting where the walker is coupled to an environment, and the time evolution of the walker and the environment is unitary. The mixing process is found to be incomplete, in the sense that the walker does not approach the maximally mixed state indefinitely, but the distance to the maximally mixed state saturates to some finite value depending on the size of the environment. The quantum speedup of mixing time is investigated numerically as the size of the environment decreases from infinity to a finite value. The mixing process in this unitary setting can be explained by interpreting it as an equilibration process in a closed quantum system, where subsystems can exhibit equilibration even when the entropy of the total system remains zero.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Shuang Cong ◽  
Fangfang Meng

The condition of a quantum Lyapunov-based control which can be well used in a closed quantum system is that the method can make the system convergent but not just stable. In the convergence study of the quantum Lyapunov control, two situations are classified: nondegenerate cases and degenerate cases. For these two situations, respectively, in this paper the target state is divided into four categories: the eigenstate, the mixed state which commutes with the internal Hamiltonian, the superposition state, and the mixed state which does not commute with the internal Hamiltonian. For these four categories, the quantum Lyapunov control methods for the closed quantum systems are summarized and analyzed. Particularly, the convergence of the control system to the different target states is reviewed, and how to make the convergence conditions be satisfied is summarized and analyzed.


Sign in / Sign up

Export Citation Format

Share Document