scholarly journals Darcy-Forchheimer flow with nonlinear mixed convection

2020 ◽  
Vol 41 (11) ◽  
pp. 1685-1696
Author(s):  
T. Hayat ◽  
F. Haider ◽  
A. Alsaedi

Abstract An analysis of the mixed convective flow of viscous fluids induced by a nonlinear inclined stretching surface is addressed. Heat and mass transfer phenomena are analyzed with additional effects of heat generation/absorption and activation energy, respectively. The nonlinear Darcy-Forchheimer relation is deliberated. The dimensionless problem is obtained through appropriate transformations. Convergent series solutions are obtained by utilizing an optimal homotopic analysis method (OHAM). Graphs depicting the consequence of influential variables on physical quantities are presented. Enhancement in the velocity is observed through the local mixed convection parameter while an opposite trend of the concentration field is noted for the chemical reaction rate parameter.

Author(s):  
Saif-ur- Rehman ◽  
Nazir Ahmad Mir ◽  
Muhammad Farooq ◽  
Naila Rafiq ◽  
Shakeel Ahmad

In this attempt, we investigate the mixed convection in Sutterby fluid flow based on boundary layer approximation. Heat transport analysis is composed of stratification and thermal radiative phenomena. The system of non-linear PDEs is transformed into coupled ODEs. Convergent series approximations are evaluated via homotopic technique. Influence of various pertinent parameters is sketched and graphically analyzed. It is found that horizontal velocity increments for higher mixed convection parameter. The radiation parameter has a similar relation with temperature whereas the stratification parameter shows opposite behavior for temperature field.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
H. Waqas ◽  
M. Imran ◽  
Taseer Muhammad ◽  
Sadiq M. Sait ◽  
R. Ellahi

Purpose The purpose of this study is to discuss the Darcy–Forchheimer nanoliquid bio-convection flow by stretching cylinder/plate with modified heat and mass fluxes, activation energy and gyrotactic motile microorganism features. Design/methodology/approach The proposed flow model is based on flow rate, temperature of nanomaterials, volume fraction of nanoparticles and gyrotactic motile microorganisms. Heat and mass transport of nanoliquid is captured by the usage of popular Buongiorno relation, which allows us to evaluate novel characteristics of thermophoresis diffusion and Brownian movement. Additionally, Wu’s slip (second-order slip) mechanisms with double stratification are incorporated. For numerical and graphical results, the built-in bvp4c technique in computational software MATLAB along with shooting technique is used. Findings The influence of key elements is illustrated pictorially. Velocity decays for higher magnitude of first- and second-order velocity slips and bioconvection Rayleigh number. The velocity of fluid has an inverse relation with mixed convection parameter and local inertia coefficient. Temperature field enhances with the increase in estimation of thermal stratification Biot number and radiation parameter. A similar situation for concentration field is observed for mixed convection parameter and concentration relaxation parameter. Microorganism concentration profile decreases for higher values of bioconvection Lewis number and Peclet number. A detail discussion is given to see how the graphical aspects justify the physical ones. Originality/value To the best of the authors’ knowledge, original research work is not yet available in existing literature.


2013 ◽  
Vol 29 (4) ◽  
pp. 623-632 ◽  
Author(s):  
F. E. Alsaadi ◽  
S. A. Shehzad ◽  
T. Hayat ◽  
S. J. Monaquel

ABSTRACTMixed convection flow of second grade fluid bounded by a permeable stretching surface is discussed. Soret and Dufour effects are also present. Series solutions for the resulting problems are made using homotopy analysis method (HAM). Analysis has been carried out for the effects of embedded parameters on the velocity, temperature and concentration fields. Numerical values of Nusselt and Sherwood numbers are computed and discussed.


2015 ◽  
Vol 10 (3) ◽  
pp. 2825-2833
Author(s):  
Achala Nargund ◽  
R Madhusudhan ◽  
S B Sathyanarayana

In this paper, Homotopy analysis method is applied to the nonlinear coupleddifferential equations of classical Boussinesq system. We have applied Homotopy analysis method (HAM) for the application problems in [1, 2, 3, 4]. We have also plotted Domb-Sykes plot for the region of convergence. We have applied Pade for the HAM series to identify the singularity and reflect it in the graph. The HAM is a analytical technique which is used to solve non-linear problems to generate a convergent series. HAM gives complete freedom to choose the initial approximation of the solution, it is the auxiliary parameter h which gives us a convenient way to guarantee the convergence of homotopy series solution. It seems that moreartificial degrees of freedom implies larger possibility to gain better approximations by HAM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Jawad ◽  
Anwar Saeed ◽  
Taza Gul ◽  
Zahir Shah ◽  
Poom Kumam

AbstractIn the current work, the unsteady thermal flow of Maxwell power-law nanofluid with Welan gum solution on a stretching surface has been considered. The flow is also exposed to Joule heating and magnetic effects. The Marangoni convection equation is also proposed for current investigation in light of the constitutive equations for the Maxwell power law model. For non-dimensionalization, a group of similar variables has been employed to obtain a set of ordinary differential equations. This set of dimensionless equations is then solved with the help of the homotopy analysis method (HAM). It has been established in this work that, the effects of momentum relaxation time upon the thickness of the film is quite obvious in comparison to heat relaxation time. It is also noticed in this work that improvement in the Marangoni convection process leads to a decline in the thickness of the fluid’s film.


2013 ◽  
Vol 431 ◽  
pp. 198-201
Author(s):  
Jing Zhu ◽  
Lian Cun Zheng

This paper presents a theoretical analysis for the incompressible MHD stagnation-point flows of a Non-Newtonian Fluid over stretching sheets.The governing system of partial differential equations is first transformed into a system of dimensionless ordinary differential equations. By using the homotopy analysis method, a convergent series solution is obtained. The reliability and efficiency of series solutions are illustrated by good agreement with numerical results in the literature.Besides, the effects of the power-law indexthe magnetic field parameter and velocity ratio parameter on the flow are investigated.


Sign in / Sign up

Export Citation Format

Share Document