moon mineralogy mapper
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 1)

Icarus ◽  
2021 ◽  
Vol 361 ◽  
pp. 114392
Author(s):  
C.D. Neish ◽  
K.M. Cannon ◽  
L.L. Tornabene ◽  
R.L. Flemming ◽  
M. Zanetti ◽  
...  

2021 ◽  
Author(s):  
Gen Ito ◽  
Jessica Flahaut ◽  
Jun Huang

<p>The far side of the Moon, which has generally been less frequently targeted by robotic and human missions in the past, has become more available for compositional analyses with measurements made by the Chang’E-4 mission that landed in South Pole-Aitken Basin in 2019. The rover of the mission, Yutu-2, has traversed over 500 m now and acquired more than 100 measurements of visible and near-infrared (VNIR) reflectance spectra. In this study, we analyze the full set of VNIR reflectance spectra collected so far in order to better understand the geology of the Von Karman mare. We compute spectral parameters to quantize major features of spectra and infer mineralogy, e.g., pyroxene composition analysis using the relationship between spectral band depths at 1 µm and 2 µm. Many of Chang’E-4 spectra do not have a detectable spectral band at 2 µm in which case we use spectral parameters for the band at 1 µm to make classifications and infer the presence of other minerals. Pyroxene composition inferred from Chang’E-4 spectra are midway between orthopyroxene and clinopyroxene, showing noticeably unique grouping when compared with 1 µm and 2 µm band depth data available from past studies. For spectra without detectable band at 2 µm, initial classification efforts based solely on spectral parameters of the 1 µm band seem to indicate that at least two distinct groups exist. We are further investigating these preliminary findings, such as through comparisons to data from Moon Mineralogy Mapper, to better understand the mineralogy of the measured materials and the geology of the region explored by Yutu-2 rover. </p>


Author(s):  
Shuheng Zhao ◽  
Qiangqiang Yuan ◽  
Jie Li ◽  
Yunze Hu ◽  
Xinxin Liu ◽  
...  

2020 ◽  
Vol 6 (36) ◽  
pp. eaba1940 ◽  
Author(s):  
Shuai Li ◽  
Paul G. Lucey ◽  
Abigail A. Fraeman ◽  
Andrew R. Poppe ◽  
Vivian Z. Sun ◽  
...  

Hematite (Fe2O3) is a common oxidization product on Earth, Mars, and some asteroids. Although oxidizing processes have been speculated to operate on the lunar surface and form ferric iron–bearing minerals, unambiguous detections of ferric minerals forming under highly reducing conditions on the Moon have remained elusive. Our analyses of the Moon Mineralogy Mapper data show that hematite, a ferric mineral, is present at high latitudes on the Moon, mostly associated with east- and equator-facing sides of topographic highs, and is more prevalent on the nearside than the farside. Oxygen delivered from Earth’s upper atmosphere could be the major oxidant that forms lunar hematite. Hematite at craters of different ages may have preserved the oxygen isotopes of Earth’s atmosphere in the past billions of years. Future oxygen isotope measurements can test our hypothesis and may help reveal the evolution of Earth’s atmosphere.


Icarus ◽  
2020 ◽  
Vol 345 ◽  
pp. 113747
Author(s):  
M. Martinot ◽  
J. Flahaut ◽  
S. Besse ◽  
C. Quantin-Nataf ◽  
W. van Westrenen

2019 ◽  
Vol 7 (5) ◽  
pp. 913-920 ◽  
Author(s):  
Honglei Lin ◽  
Zhiping He ◽  
Wei Yang ◽  
Yangting Lin ◽  
Rui Xu ◽  
...  

Abstract Chang’E-4 landed in the South Pole-Aitken (SPA) basin, providing a unique chance to probe the composition of the lunar interior. Its landing site is located on ejecta strips in Von Kármán crater that possibly originate from the neighboring Finsen crater. A surface rock and the lunar regolith at 10 sites along the rover Yutu-2 track were measured by the onboard Visible and Near-Infrared Imaging Spectrometer in the first three lunar days of mission operations. In situ spectra of the regolith have peak band positions at 1 and 2 μm, similar to the spectral data of Finsen ejecta from the Moon Mineralogy Mapper, which confirms that the regolith's composition of the landing area is mostly similar to that of Finsen ejecta. The rock spectrum shows similar band peak positions, but stronger absorptions, suggesting relatively fresh exposure. The rock may consist of 38.1 ± 5.4% low-Ca pyroxene, 13.9 ± 5.1% olivine and 48.0 ± 3.1% plagioclase, referred to as olivine-norite. The plagioclase-abundant and olivine-poor modal composition of the rock is inconsistent with the origin of the mantle, but representative of the lunar lower crust. Alternatively, the rock crystallized from the impact-derived melt pool formed by the SPA-impact event via mixing the lunar crust and mantle materials. This scenario is consistent with fast-cooling thermal conditions of a shallow melt pool, indicated by the fine to medium-sized texture (<3 mm) of the rock and the SPA-impact melting model [Icarus 2012; 220: 730–43].


2019 ◽  
Vol 630 ◽  
pp. L7
Author(s):  
C. Wöhler ◽  
A. Grumpe ◽  
M. Bhatt ◽  
A. A. Berezhnoy ◽  
V. V. Shevchenko ◽  
...  

Using the near-infrared spectral reflectance data of the Chandrayaan-1 Moon Mineralogy Mapper (M3) instrument, we report an unusually bright structure of 30 × 60 km2 on the lunar equatorial farside near crater Dufay. At this location, the 3-μm absorption band feature, which is commonly ascribed to hydroxyl (OH) and/or water (H2O), at local midday is significantly (∼30%) stronger than on the surrounding surface and, surprisingly, stronger than in the illuminated polar highlands. We did not find a similar area of excessively strong 3-μm absorption anywhere else on the Moon. A possible explanation for this structure is the recent infall of meteoritic or cometary material of high OH/H2O content forming a thin layer detectable by its pronounced 3-μm band, where a small amount of the OH/H2O is adsorbed by the surface material into binding states of relatively high activation energy. Detailed analysis of this structure with next-generation spacecraft instrumentation will provide further insight into the processes that lead to the accumulation of OH/H2O in the lunar regolith surface.


2019 ◽  
Vol 11 (13) ◽  
pp. 1544
Author(s):  
Zhou ◽  
Zhang ◽  
Chen ◽  
Zhu

Olivine formation is directly related to Mg/Fe content. It is also significant in estimating the geological evolution of the moon. In this study, an estimation model of relative Mg number (Fo#) for lunar olivine was presented through multiple linear regression statistics. Sinus Iridum, the Copernicus Crater, and the pyroclastic deposit in the volcanic vents in the southeast of Orientale Basin were selected as the study areas. Olivine distribution was surveyed, and the relative Fo# calculation of olivine was implemented based on Moon Mineralogy Mapper (M3) data. Results demonstrated that olivine in the crater wall of Sinus Iridum and the Copernicus Crater had relatively high Fo#, which reflected the primitive melt. However, the difference in olivine spectral features between Sinus Iridum and the Copernicus Crater indicated different crystallization modes. The olivine in the pyroclastic deposit in the volcanic vents in the southwest of Orientale Basin also presented high Fo#, which indicated that the olivine was formed via rapid cooling crystallization and was accompanied by volcanic glass substances. As a result, the olivine relative Fo# calculated from the estimation model exhibited an important constraint implication for explanation of its causes.


Sign in / Sign up

Export Citation Format

Share Document