candidate predictor
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 13)

H-INDEX

4
(FIVE YEARS 1)

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yusuke Takanashi ◽  
Kazuhito Funai ◽  
Fumihiro Eto ◽  
Kiyomichi Mizuno ◽  
Akikazu Kawase ◽  
...  

Abstract Background To reduce disease recurrence after radical surgery for lung squamous cell carcinomas (SQCCs), accurate prediction of recurrent high-risk patients is required for efficient patient selection for adjuvant chemotherapy. Because treatment modalities for recurrent lung SQCCs are scarce compared to lung adenocarcinomas (ADCs), accurately selecting lung SQCC patients for adjuvant chemotherapy after radical surgery is highly important. Predicting lung cancer recurrence with high objectivity is difficult with conventional histopathological prognostic factors; therefore, identification of a novel predictor is expected to be highly beneficial. Lipid metabolism alterations in cancers are known to contribute to cancer progression. Previously, we found that increased sphingomyelin (SM)(d35:1) in lung ADCs is a candidate for an objective recurrence predictor. However, no lipid predictors for lung SQCC recurrence have been identified to date. This study aims to identify candidate lipid predictors for lung SQCC recurrence after radical surgery. Methods Recurrent (n = 5) and non-recurrent (n = 6) cases of lung SQCC patients who underwent radical surgery were assigned to recurrent and non-recurrent groups, respectively. Extracted lipids from frozen tissue samples of primary lung SQCC were analyzed by liquid chromatography-tandem mass spectrometry. Candidate lipid predictors were screened by comparing the relative expression levels between the recurrent and non-recurrent groups. To compare lipidomic characteristics associated with recurrent SQCCs and ADCs, a meta-analysis combining SQCC (n = 11) and ADC (n = 20) cohorts was conducted. Results Among 1745 screened lipid species, five species were decreased (≤ 0.5 fold change; P < 0.05) and one was increased (≥ 2 fold change; P < 0.05) in the recurrent group. Among the six candidates, the top three final candidates (selected by AUC assessment) were all decreased SM(t34:1) species, showing strong performance in recurrence prediction that is equivalent to that of histopathological prognostic factors. Meta-analysis indicated that decreases in a limited number of SM species were observed in the SQCC cohort as a lipidomic characteristic associated with recurrence, in contrast, significant increases in a broad range of lipids (including SM species) were observed in the ADC cohort. Conclusion We identified decreased SM(t34:1) as a novel candidate predictor for lung SQCC recurrence. Lung SQCCs and ADCs have opposite lipidomic characteristics concerning for recurrence risk. Trial registration This retrospective study was registered at the UMIN Clinical Trial Registry (UMIN000039202) on January 21, 2020.


Author(s):  
Michael A. Puskarich ◽  
Theodore S. Jennaro ◽  
Christopher E. Gillies ◽  
Charles R. Evans ◽  
Alla Karnovsky ◽  
...  

2021 ◽  
Author(s):  
Sandra Tavares ◽  
Nalan Liv ◽  
Milena Pasolli ◽  
Mark Opdam ◽  
Max Ratze ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0243674
Author(s):  
John L. Mbotwa ◽  
Marc de Kamps ◽  
Paul D. Baxter ◽  
George T. H. Ellison ◽  
Mark S. Gilthorpe

The present study aimed to compare the predictive acuity of latent class regression (LCR) modelling with: standard generalised linear modelling (GLM); and GLMs that include the membership of subgroups/classes (identified through prior latent class analysis; LCA) as alternative or additional candidate predictors. Using real world demographic and clinical data from 1,802 heart failure patients enrolled in the UK-HEART2 cohort, the study found that univariable GLMs using LCA-generated subgroup/class membership as the sole candidate predictor of survival were inferior to standard multivariable GLMs using the same four covariates as those used in the LCA. The inclusion of the LCA subgroup/class membership together with these four covariates as candidate predictors in a multivariable GLM showed no improvement in predictive acuity. In contrast, LCR modelling resulted in a 18–22% improvement in predictive acuity and provided a range of alternative models from which it would be possible to balance predictive acuity against entropy to select models that were optimally suited to improve the efficient allocation of clinical resources to address the differential risk of the outcome (in this instance, survival). These findings provide proof-of-principle that LCR modelling can improve the predictive acuity of GLMs and enhance the clinical utility of their predictions. These improvements warrant further attention and exploration, including the use of alternative techniques (including machine learning algorithms) that are also capable of generating latent class structure while determining outcome predictions, particularly for use with large and routinely collected clinical datasets, and with binary, count and continuous variables.


2021 ◽  
Vol 16 (3) ◽  
pp. S483
Author(s):  
Y. Takanashi ◽  
S. Sato ◽  
H. Tao ◽  
T. Kahyo ◽  
A. Kawase ◽  
...  

2021 ◽  
Author(s):  
Alberto Hernando ◽  
David Mateo ◽  
Jordi Bayer ◽  
Ignacio Barrios

AbstractTotal and perimetral lockdowns were the strongest nonpharmaceutical interventions to fight against Covid-19, as well as the with the strongest socioeconomic collateral effects. Lacking a metric to predict the effect of lockdowns in the spreading of COVID-19, authorities and decision-makers opted for preventive measures that showed either too strong or not strong enough after a period of two to three weeks, once data about hospitalizations and deaths was available. We present here the radius of gyration as a candidate predictor of the trend in deaths by COVID-19 with an offset of three weeks. Indeed, the radius of gyration aggregates the most relevant microscopic aspects of human mobility into a macroscopic value, very sensitive to temporary trends and local effects, such as lockdowns and mobility restrictions. We use mobile phone data of more than 13 million users in Spain during a period of one year (from January 6th 2020 to January 10th 2021) to compute the users’ daily radius of gyration and compare the median value of the population with the evolution of COVID-19 deaths: we find that for all weeks where the radius of gyration is above a critical value (70% of its pre-pandemic score) the number of weekly deaths increases three weeks after. The reverse also stands: for all weeks where the radius of gyration is below the critical value, the number of weekly deaths decreased after three weeks. This observation leads to two conclusions: i) the radius of gyration can be used as a predictor of COVID-19-related deaths; and ii) partial mobility restrictions are as effective as a total lockdown as far the radius of gyration is below this critical value.BackgroundAuthorities around the World have used lockdowns and partial mobility restrictions as major nonpharmaceutical interventions to control the expansion of COVID-19. While effective, the efficiency of these measures on the number of COVID-19 cases and deaths is difficult to quantify, severely limiting the feedback that can be used to tune the intensity of these measures. In addition, collateral socioeconomic effects challenge the overall effectiveness of lockdowns in the long term, and the degree by which they are followed can be difficult to estimate. It is desirable to find both a metric to accurately monitor the mobility restrictions and a predictor of their effectiveness.MethodsWe correlate the median of the daily radius of gyration of more than 13M users in Spain during all of 2020 with the evolution of COVID-19 deaths for the same period. Mobility data is obtained from mobile phone metadata from one of the major operators in the country.ResultsThe radius of gyration is a predictor of the trend in the number of COVID-19 deaths with 3 weeks offset. When the radius is above/below a critical threshold (70% of the pre-pandemic score), the number of deaths increases/decreases three weeks later.ConclusionsThe radius of gyration can be used to monitor in real time the effectiveness of the mobility restrictions. The existence of a critical threshold suggest that partial lockdowns can be as efficient as total lockdowns, while reducing their socioeconomic impact. The mechanism behind the critical value is still unknow, and more research is needed.


2021 ◽  
Author(s):  
Michael A. Puskarich ◽  
Theodore S. Jennaro ◽  
Christopher E. Gillies ◽  
Charles R. Evans ◽  
Alla Karnovsky ◽  
...  

AbstractBackgroundSepsis-induced metabolic dysfunction contributes to organ failure and death. L-carnitine has shown promise for septic shock, but a recent study demonstrated a non-significant reduction in mortality.MethodsA pharmacometabolomics study of patients (n=250) in a Phase II trial of L-carnitine to identify metabolic profiles predictive of a 90-day mortality benefit from L-carnitine. The independent predictive value of each pre-treatment metabolite concentration, adjusted for L-carnitine dose, on 90-day mortality was determined by logistic regression. A grid-search analysis maximizing the Z-statistic from a binomial proportion test identified specific metabolite threshold levels that discriminated L-carnitine responsive patients. Threshold concentrations were further assessed by hazard-ratio and Kaplan-Meier estimate.FindingsAccounting for L-carnitine treatment and dose, 11 1H-NMR metabolites and 12 acylcarnitines were independent predictors of 90-day mortality. Based on the grid-search analysis numerous acylcarnitines and valine were identified as candidate metabolites of drug response. Acetylcarnitine emerged as highly viable for the prediction of an L-carnitine mortality benefit due to its abundance and biological relevance. Using its most statistically significant threshold concentration, patients with acetylcarnitine ≥35µM were less likely to die at 90 days if treated with L-carnitine (18 g) versus placebo (p=0.01 by log rank test).InterpretationMetabolomics identified independent predictors of 90-day sepsis mortality. Our proof-of-concept approach shows how pharmacometabolomics may be useful for tackling the heterogeneity of sepsis and informing clinical trial design. Also, metabolomics can help understand mechanisms of sepsis heterogeneity and variable drug response, since sepsis induces alterations in numerous metabolite concentrations.


2020 ◽  
Author(s):  
John L Mbotwa ◽  
Marc de Kamps ◽  
Paul D Baxter ◽  
George TH Ellison ◽  
Mark S Gilthorpe

AbstractThe present study aimed to compare the predictive acuity of latent class regression (LCR) modelling with: standard generalised linear modelling (GLM); and GLMs that include the membership of subgroups/classes (identified through prior latent class analysis; LCA) as alternative or additional candidate predictors. Using real world demographic and clinical data from 1,802 heart failure patients enrolled in the UK-HEART2 cohort, the study found that univariable GLMs using LCA-generated subgroup/class membership as the sole candidate predictor of survival were inferior to standard multivariable GLMs using the same four covariates as those used in the LCA. The inclusion of the LCA subgroup/class membership together with these four covariates as candidate predictors in a multivariable GLM showed no improvement in predictive acuity. In contrast, LCR modelling resulted in a 10-14% improvement in predictive acuity and provided a range of alternative models from which it would be possible to balance predictive acuity against entropy to select models that were optimally suited to improve the efficient allocation of clinical resources to address the differential risk of the outcome (in this instance, survival). These findings provide proof-of-principle that LCR modelling can improve the predictive acuity of GLMs and enhance the clinical utility of their predictions. These improvements warrant further attention and exploration, including the use of alternative techniques (including machine learning algorithms) that are also capable of generating latent class structure while determining outcome predictions, particularly for use with large and routinely collected clinical datasets, and with binary, count and continuous variables.


2020 ◽  
Author(s):  
Yusuke Takanashi ◽  
Kazuhito Funai ◽  
Shumpei Sato ◽  
Akikazu Kawase ◽  
Hong Tao ◽  
...  

Abstract Background: To improve the postoperative prognosis of patients with lung cancer, predicting the recurrence high-risk patients is needed for the efficient application of adjuvant chemotherapy. However, predicting lung cancer recurrence after a radical surgery is difficult even with conventional histopathological prognostic factors, thereby a novel predictor should be identified. As lipid metabolism alterations are known to contribute to cancer progression, we hypothesized that lung adenocarcinomas with high recurrence risk contain candidate lipid predictors. This study aimed to identify candidate lipid predictors for the recurrence of lung adenocarcinoma after a radical surgery.Methods: Frozen tissue samples of primary lung adenocarcinoma obtained from patients who underwent a radical surgery were retrospectively reviewed. Recurrent and non-recurrent cases were assigned to recurrent (n = 10) and non-recurrent (n = 10) groups, respectively. Extracted lipids from frozen tissue samples were subjected to liquid chromatography-tandem mass spectrometry analysis. The average total lipid levels of the non-recurrent and recurrent groups were compared. Candidate predictors were screened by comparing the folding change and P-value of t-test in each lipid species between the recurrent and non-recurrent groups.Results: The average total lipid level of the recurrent group was 1.65 times higher than that of the non-recurrent group (P < 0.05). A total of 203 lipid species were increased (folding change, ≥2; P < 0.05) and 4 lipid species were decreased (folding change, ≤0.5; P < 0.05) in the recurrent group. Among these candidates, increased sphingomyelin (SM)(d35:1) in the recurrent group was the most prominent candidate predictor, showing high performance of recurrence prediction (AUC, 9.1; sensitivity, 1.0; specificity, 0.8; accuracy, 0.9).Conclusion: We propose SM(d35:1) as a novel candidate predictor for lung adenocarcinoma recurrence. Our finding can contribute to precise recurrence prediction and qualified postoperative therapeutic strategy for lung adenocarcinomas.Abbreviations: AUC, area under the ROC curve; ROC, receiver operating characteristic. This retrospective study was registered at the UMIN Clinical Trial Registry (UMIN000039202) on 21st January 2020.


2020 ◽  
Author(s):  
Yusuke Takanashi ◽  
Kazuhito Funai ◽  
Shumpei Sato ◽  
Akikazu Kawase ◽  
Hong Tao ◽  
...  

Abstract Background: To improve the postoperative prognosis of patients with lung cancer, predicting the recurrence high-risk patients is needed for the efficient application of adjuvant chemotherapy. However, predicting lung cancer recurrence after a radical surgery is difficult even with conventional histopathological prognostic factors, thereby a novel predictor should be identified. As lipid metabolism alterations are known to contribute to cancer progression, we hypothesized that lung adenocarcinomas with high recurrence risk contain candidate lipid predictors. This study aimed to identify candidate lipid predictors for the recurrence of lung adenocarcinoma after a radical surgery.Methods: Frozen tissue samples of primary lung adenocarcinoma obtained from patients who underwent a radical surgery were retrospectively reviewed. Recurrent and non-recurrent cases were assigned to recurrent (n = 10) and non-recurrent (n = 10) groups, respectively. Extracted lipids from frozen tissue samples were subjected to liquid chromatography-tandem mass spectrometry analysis. The average total lipid levels of the non-recurrent and recurrent groups were compared. Candidate predictors were screened by comparing the folding change and P-value of t-test in each lipid species between the recurrent and non-recurrent groups.Results: The average total lipid level of the recurrent group was 1.65 times higher than that of the non-recurrent group (P < 0.05). A total of 203 lipid species were increased (folding change, ≥2; P < 0.05) and 4 lipid species were decreased (folding change, ≤0.5; P < 0.05) in the recurrent group. Among these candidates, increased sphingomyelin (SM)(d35:1) in the recurrent group was the most prominent candidate predictor, showing high performance of recurrence prediction (AUC, 9.1; sensitivity, 1.0; specificity, 0.8; accuracy, 0.9).Conclusion: We propose SM(d35:1) as a novel candidate predictor for lung adenocarcinoma recurrence. Our finding can contribute to precise recurrence prediction and qualified postoperative therapeutic strategy for lung adenocarcinomas.Abbreviations: AUC, area under the ROC curve; ROC, receiver operating characteristic.


Sign in / Sign up

Export Citation Format

Share Document