prior plastic deformation
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 3)

Author(s):  
Raghu V. Prakash ◽  
Deepika Sudevan

The thermo-mechanical response of carbon fiber reinforced polymer (CFRP) laminates subjected to continuous tensile loading and programmed interrupted tensile loading is examined to understand the changes due to damage progression. Quasi-isotropic laminates were prepared using 500 GSM twill weave carbon fabric with LY 556 resin and HY 991 hardener by hand lay-up technique, followed by curing under hot compression. A few specimens were subjected to an impact loading to 23 J and 51 J energy levels using a hemispherical tip to induce low velocity impact damage. Passive thermal imaging of woven CFRP laminates during tensile testing was captured using a TIM 160 Micro-epsilon infrared thermal camera. Temperature response during tensile testing provided a good correlation with deformation mode esp. for specimens impacted with 51 J of energy. Tensile tests were interrupted at periodic loads and unloaded and reloaded to study the thermal response after prior plastic deformation damage in the specimen. Unlike the case of GFRP specimens, distinct changes in thermo-elastic slope due to prior plastic deformation damage could not be clearly identified. As impact damage resulted in de-lamination of some layers, active thermography technique was used to study the rate of cooling of specimen with time when the damage is closer to the camera face as well as when it is away from the camera face. The cooling curves obtained were found to be dependent on the location of the damage, as well as on heating face of the specimen.


2010 ◽  
Vol 652 ◽  
pp. 13-18 ◽  
Author(s):  
M.O. Acar ◽  
P. John Bouchard ◽  
Joao Quinta da Fonseca ◽  
Michael E. Fitzpatrick ◽  
S. Gungor

Neutron diffraction has been used to investigate the weld residual stresses and the intergranular residual strains in butt-welded 316H pipes. Measurements have been made on pipes subjected to varying degrees of plastic pre-straining before welding, in order to assess the effects of plastic strain on the weld residual stresses and the intergranular strains in the material. The intergranular strains following plastic deformation will also be affected by the annealing effect of the welding. Pipes were initially prepared with plastic strain of 0, 10, 15, 20 and 25% plastic deformation. Thereafter, the pipes were cut in half and welded with a circumferential butt-weld. Bar specimens were extracted from the remote end of the 0, 10, 15, 20 and 25% pre-strained and welded pipes. Cross-weld bar specimens were also machined from the 0 and 20% pre-strained and welded pipes. Neutron diffraction measurements were made at ENGIN-X, ISIS and FRM-II, Munich. The aim of this paper is to evaluate the intergranular strains developed after pre-straining from measurements made in remote bar specimens from the remote-end of the pipes. The annealing effect of the welding cycle on the intergranular strains is also studied, with measurements done at several points on cross-weld bar specimens, obtaining the strain response of different hkl lattice planes. The results show that the {200} and {220} planes are at the extremes of response during loading. Furthermore, the welding thermal cycling relaxed the intergranular strains from the prior plastic deformation.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 6070-6075 ◽  
Author(s):  
E. J. PAVLINA ◽  
B. S. LEVY ◽  
C. J. VAN TYNE ◽  
S. O. KWON ◽  
Y. H. MOON

Springback is a problem in the manufacture of a variety of automotive components. To determine springback, it is necessary to know the strength of the material after plastic deformation and the slope of the unloading curve (i.e. the unloading modulus). Prior investigations have shown that the unloading modulus for steels after plastic deformation has a slope that is lower than the normally accepted value for Young's modulus. Previous studies on the slope of the unloading curve were after uniaxial tensile plastic deformation. In the present study, the unloading modulus for an aluminum killed drawing quality (AKDQ) steel was evaluated after both uniaxial and near plane strain deformation. A tube hydroforming system was used for near plane-strain deformation. The average unloading modulus following uniaxial deformation for the AKDQ steel is approximately 168 GPa. The average unloading modulus for the circumferential stress component after near plane-strain deformation is lower than after uniaxial deformation. For a given amount of overall plastic deformation, the axial component of the unloading modulus is greater than the circumferential component, and with increased plastic strain, the unloading modulus for both components decreases. These results demonstrate that the components of the unloading modulus are dependent on the strain path of the prior plastic deformation.


2007 ◽  
Vol 560 ◽  
pp. 23-28
Author(s):  
A. Mani-Medrano ◽  
Armando Salinas-Rodríguez

The effects of tensile deformation on the amount of hcp phase formed during a 3 hour isothermal aging at 800 °C is studied using in-situ X-ray diffraction and scanning electron microscopy. It is shown that the start of the isothermal martensitic transformation during aging of this material is delayed by prior plastic deformation. Nevertheless, the total amount of hcp phase present in the microstructure at the beginning of aging increases at a continuously decreasing rate due to stress-assisted transformation. This behavior is attributed to the relieving of internal stresses produced by plastic deformation prior to aging. Finally, during the last stage of aging, the amount of hcp phase in the microstructure increases as a result of isothermal martensitic transformation. It is suggested that the presence of mechanically-induced hcp phase during aging inhibits the thermally activated nucleation process that leads to the isothermal martensitic transformation.


Sign in / Sign up

Export Citation Format

Share Document