fibrous carbon
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 28)

H-INDEX

16
(FIVE YEARS 4)

Surface ◽  
2021 ◽  
Vol 13(28) ◽  
pp. 197-205
Author(s):  
L. S. Dzubenko ◽  
◽  
P. P. Gorbyk ◽  
A. A. Sapyanenko ◽  
N. M. Rezanova ◽  
...  

There were PP- and iron-containing, fibrous, carbon- and nanodispersed-addition-based composite fibers prepared. There were addition content equals of 5.0%mass. There were blend of isotactic PP and addition homogenized in melt with one-screw lab extruder. There were zonal temperature on extruder equals of 230-250 o C. There were strangs receiving in bath of water and threated with knife granulation. Then, there were granules drying on air during 5h, and, then in thermal vacuum oven at 80±5 o C during 3h. Then, there are monofiber of 1 mm’s diameter formed on lab stand. Then, from one formed those others monofibers of different values of spinneret drawing (Фв, %). There were Фв for monofibers equals of 300 and 500%. Then, there were formed monofibers threated with thermoorientational drawing process at 150 oC. Then, there were monofibers of Фв value, which equals of 300%, drawn till draw degree λ=6, but, those others of Фв value, which equals of 500% - to λ=4. It is succeed, for composite monofibers, that orientational drawing process has had realized, until to the same value, as well as for one of virgin PP. But, when at formation and thermoorientational drawing processes, there were placing much number of breaks, as compared with monofiber of pure PP. When studying the structure with SEM technique, there was revealed microfibrillar structure of composite monofiber. When using optical microscopy, then there was determined irregularity for distribution of addition’s particles, leading to disproportional distribution of tension values at loading. It is revealed, for composite monofiber, at given value for content of addition, that electrical conductivity phenomenon is absent here. There are real ε’and imaginal ε’’ parts of complex dielectrical permittivity phenomenon, on frequency of 9 GHz, equals of 2.1 and 0.2, accordingly. It is established, that pure, non-drawn and composite monofiber itrinsically have satisfactory magnetic properties (σs=0.5 Gs∙cm3/g, Hc= 695 E). There are real μ’ and imaginal μ’’ parts of complex magnetical permittivity phenomenon equals of 1.1 and 0.02, accordingly.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1796
Author(s):  
Blagoj Karakashov ◽  
M’Barek Taghite ◽  
Richard Kouitat ◽  
Vanessa Fierro ◽  
Alain Celzard

The ability of various commercial fibrous carbon materials to withstand stress and conduct heat has been evaluated through experimental and analytical studies. The combined effects of different micro/macro-structural characteristics were discussed and compared. Large differences in mechanical behavior were observed between the different groups or subgroups of fibrous materials, due to the different types of fibers and the mechanical and/or chemical bonds between them. The application of the Mooney–Rivlin model made it possible to determine the elastic modulus of soft felts, with a few exceptions, which were studied in-depth. The possible use of two different mechanical test methods allowed a comparison of the results in terms of elastic modulus obtained under different deformation regimes. The effective thermal conductivity of the same fibrous materials was also studied and found to be much lower than that of a single carbon fiber due to the high porosity, and varied with the bulk density and the fiber organization involving more or less thermal contact resistances. The thermal conductivity of most materials is highly anisotropic, with higher values in the direction of preferential fiber orientation. Finally, the combination of compression and transient thermal conductivity measurement techniques allowed the heat conduction properties of the commercial fibrous carbons to be investigated experimentally when compressed. It was observed that thermal conductivity is strongly affected under compression, especially perpendicular to the main fiber orientation.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yang Li ◽  
Wang Yang ◽  
Wu Yang ◽  
Ziqi Wang ◽  
Jianhua Rong ◽  
...  

AbstractAqueous Zn-ion hybrid supercapacitors (ZHSs) are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance, high safety and low cost. Herein, high-energy and anti-self-discharge ZHSs are realized based on the fibrous carbon cathodes with hierarchically porous surface and O/N heteroatom functional groups. Hierarchically porous surface of the fabricated free-standing fibrous carbon cathodes not only provides abundant active sites for divalent ion storage, but also optimizes ion transport kinetics. Consequently, the cathodes show a high gravimetric capacity of 156 mAh g−1, superior rate capability (79 mAh g−1 with a very short charge/discharge time of 14 s) and exceptional cycling stability. Meanwhile, hierarchical pore structure and suitable surface functional groups of the cathodes endow ZHSs with a high energy density of 127 Wh kg−1, a high power density of 15.3 kW kg−1 and good anti-self-discharge performance. Mechanism investigation reveals that ZHS electrochemistry involves cation adsorption/desorption and Zn4SO4(OH)6·5H2O formation/dissolution at low voltage and anion adsorption/desorption at high voltage on carbon cathodes. The roles of these reactions in energy storage of ZHSs are elucidated. This work not only paves a way for high-performance cathode materials of ZHSs, but also provides a deeper understanding of ZHS electrochemistry.


Author(s):  
El Mahdi Halim ◽  
Rezan Demir-Cakan ◽  
Catherine Debiemme-Chouvy ◽  
Hubert Perrot ◽  
Mama El Rhazi ◽  
...  

Nanostructured fibrous composite electrodes are prepared by direct electrooxidation of ortho-phenylenediamine (oPD) monomer on a carbon network based on single-wall carbon nanotubes (SWCNT). The simple and rapid fabrication method leads...


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5746
Author(s):  
Hao Guo ◽  
Peizhi Ji ◽  
István Zoltán Halász ◽  
Dávid Zoltán Pirityi ◽  
Tamás Bárány ◽  
...  

Fibrous carbon nanotubes (CNTs) and lamellar graphene oxide (GO) exhibit significant advantages for improving the fatigue properties of rubber composites. In this work, the synergistic effect of CNTs and GO on the modification of the microstructure and fatigue properties of natural rubber (NR) was comprehensively investigated. Results showed that CNTs and GO were interspersed, and they formed a strong filler network in the NR matrix. Compared with those of CNT/NR and GO/NR composites, the CNT-GO/NR composites showed the smallest crack precursor sizes, the lowest crack growth rates, more branching and deflections, and the longest fatigue life.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5416
Author(s):  
Shipeng Wen ◽  
Rui Zhang ◽  
Zongchao Xu ◽  
Long Zheng ◽  
Li Liu

The topology of nanofillers is one of the key factors affecting the gas barrier properties of rubber composites. In this research, three types of carbon-based nanofillers, including spherical carbon black (CB), fibrous carbon nanotubes (CNTs), and layered graphene (GE) were chosen to investigate the effect of the topological structures of nanofillers on the gas barrier properties of styrene-butadiene rubber (SBR) composites. Results showed that the structure and strength of the filler networks in SBR composites were closely associated with the topology of nanofillers. When filled with 35 phr CB, 8 phr CNTs, and 4 phr GE, the SBR composites had the same strength of the filler network, while the improvement in gas barrier properties were 39.2%, 12.7%, and 41.2%, respectively, compared with pure SBR composites. Among the three nanofillers, GE exhibited the most excellent enhancement with the smallest filler content, demonstrating the superiority of two-dimensional GE in improving the barrier properties of rubber composites.


Sign in / Sign up

Export Citation Format

Share Document