alloying additives
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 22)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Vol 1049 ◽  
pp. 240-247
Author(s):  
Ivan S. Zherebcov ◽  
Valeriy V. Savin ◽  
Alexander V. Osadchy ◽  
Victoriia A. Chaika ◽  
Vadim Borkovskih

Scientific research and the search for new technologies to increase the level of mechanical and high-temperature properties are ongoing. The article discusses the technology of using carbon materials, pyrolysis and impregnation with phenol-formaldehyde resins. It is shown that the proposed technology makes it possible to achieve a sufficient level of mechanical properties when using low-modulus carbon fabrics after pyrolytic treatment as a prepreg at a temperature treatment no higher than 900 K. Pillowcase and resole phenol-formaldehyde resins were used to impregnate the prepreg. The proposed technology also allows the introduction of alloying additives into the system to improve the properties. An example of the introduction of nitrogen into a composite by adding urotropine to a phenol-formaldehyde resin, which was used to impregnate the composite, is considered.


2021 ◽  
Vol 1199 (1) ◽  
pp. 012022
Author(s):  
H Pacha-Gołębiowska ◽  
W Piekarska

Summary In many recent publications on the optimisation of alloys in terms of, among other things, their strength and resistance to wear, a trend can be observed to look for new alloying additives to improve these properties. This paper presents the results of a study on the effect of changes in the chemical composition of EN-GJS-500-7 ductile alloy cast iron on its mechanical properties. In order to confirm the effect of alloying additives on the mechanical properties of the alloys, industrial melting of cast iron was carried out and samples were taken for testing. The smelts were not subjected to heat treatment, but were carried out differently in terms of the feedstock used and based on the analysis of the cooling curve using an automated smelting technology enabling the elimination of degraded Chunky graphite. The influence of the shape of graphite precipitates on tensile strength and hardness was determined, and spectroscopic studies of the microstructure of cast irons were carried out.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1302
Author(s):  
Marzena Tokarewicz ◽  
Małgorzata Grądzka-Dahlke

High-entropy alloys (HEAs) have gained significant interest in recent years because of their outstanding properties. The AlCoCrFeNi alloy is one of the most studied HEAs. The effect of the manufacturing methods and heat treatment on the properties of the high-entropy AlCoCrFeNi alloy is under intense scrutiny. The effect of varying component content on properties of the alloy is frequently analysed. Aluminium is most popular due to its impact on alloy microstructure and occurrence of phases. Research is also conducted on the influence of alloying additives, such as boron and titanium, on the properties of the AlCoCrFeNi alloy. High-entropy alloys also have excellent mechanical properties at high temperatures. Excellent structural and functional properties make them suitable for application in the most demanding conditions. The research conducted on HEAs still provides a lot of new and valuable information on the properties and structures of these alloys. This article summarizes the most important information about HEAs, specifically the AlCoCrFeNi alloy.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3971
Author(s):  
Hany S. Abdo ◽  
Asiful H. Seikh ◽  
Jabair Ali Mohammed ◽  
Mahmoud S. Soliman

The present investigation deals with a comprehensive study on the production of aluminum based alloys with the incorporation of different alloying elements and their effect on its electrical conductivity and mechanical properties. Casting of pure aluminum with different concentration and combinations of alloying additives such as cupper (Cu), magnesium (Mg) and silver (Ag) were carried out using a graphite crucible. The as-cast microstructure was modified by hot rolling followed by different heat-treated conditions viz., annealing, normalizing, quenching, and age hardening. The mechanical properties and electrical conductivity of the produced heat-treated alloys sheets under various processing conditions were carried out using tensile testing, hardness, and electrical resistivity measurements. It was found that by increasing the alloying elements content, yield strength results increased significantly by more than 250% and 500% for the as rolled and 8 h aged Al-Cu-Mg alloy, respectively. On the other hand, the electrical conductivity reduces slightly with −14.6% and −16.57% for the as rolled and 8 h aged of the same Al-Cu-Mg alloy, respectively.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 589
Author(s):  
Beata Białobrzeska

The presented work was aimed at evaluating influence of boron on hardenability of steel quantitatively and evaluating this effect during complex use of boron with other alloying additives like chromium, vanadium and titanium. For this purpose, eight melts with variable chemical compositions were prepared. From the ingots, cylindrical specimens with normalized dimensions according to EN ISO 642:1999 were cut out and subjected to full annealing at 1200 °C and to normalizing at 900 °C. Such specimens were subjected to the hardenability Jominy test. In order to distinguish the influence of boron on hardenability of a given melt and thus to eliminate the differences resulting from its chemical composition, grain size and austenitizing temperature, the obtained ideal critical diameter was corrected and the boron effectiveness factor was determined. The performed examinations and analyses showed that inadequate quantities of microadditives result in losing the benefits coming from introduction of boron as the hardenability-improving element and can even result in a reduction of hardenability of the boron-containing steel.


2021 ◽  
pp. 37-48
Author(s):  
Wojciech Ściężor ◽  
Radosław Kowal ◽  
Krystian Franczak ◽  
Justyna Grzebinoga ◽  
Paweł Kwaśniewski ◽  
...  

New materials used in various industries require sufficiently high mechanical properties, fine-grained structure and ease of metal forming while minimizing production costs. For this reason, work is being carried out to develop new groups of alloys that make it possible to increase the strength of the obtained components while reducing their weight, and thus reducing production costs. This article focuses on two aluminium-based alloys with different content of alloying additives: copper and magnesium i.e., AlCu3Mg3 and AlCu4.5Mg6, which were produced by metallurgical synthesis. The as-cast alloys were characterized for their basic physical, mechanical and electrical properties and were subjected to structural analysis. In the next stage, the alloys were modified with 100, 500, 1000 and 2000 ppm of titanium and then their hardness, electrical conductivity and density were tested. Samples were also subjected to microstructural analysis. The obtained results allowed to examine the evolution of the AlCuMg alloy properties depending on the content of alloy additives and the amount of used modifier.


2021 ◽  
Vol 87 (1) ◽  
pp. 30-34
Author(s):  
V. G. Kostishin ◽  
R. M. Vergazov ◽  
S. B. Menshova ◽  
I. M. Isaev ◽  
A. V. Timofeev

Coatings made of the materials that effectively absorb radiation, e.g., ferrite materials, are used to reduce the level of electromagnetic radiation in rooms containing household or industrial equipment. It is known that significant dissipation of the radiation energy is provided by the thickness of the shielding coating which should be comparable to the length of the electromagnetic wave in the material which, in turn, significantly decreases at high values of the magnetic permeability and permittivity of the radio-absorbing material. Ferrite radio-absorbing coatings are characterized by the high heat resistance, low flammability and small (10 – 20 mm) thickness. However, at frequencies less than 40 MHz, plates with a thickness of more than 30 mm are to be used to provide the effective absorption, and the weight and cost of the coatings increase significantly. The results of studying the effect of the sintering temperature and micro-additives of titanium, calcium and bismuth oxides on the dielectric constant of Ni- and Mn-Zn radio-absorbing ferrites are presented. Reactively pure starting oxide components with a basic substance content of more than 99.6 % wt. were used to synthesize samples using traditional oxide technology. It is shown that alloying with bismuth and titanium oxides is rather effective for obtaining radio-absorbing ferrites with a combination of high values of the magnetic permeability and dielectric permittivity. The obtained results can be used in production of ferrite radio- absorbing materials operating in the megahertz range.


Author(s):  
N. M. Rusin ◽  
◽  
A. L. Skorentsev ◽  

Composites of the Al—Sn system obtained by liquid-phase sintering of a mixture of doped aluminum powders with tin powder have been investigated. It was found that a small amount of alloying additives (Zn, Mg, Si, Cu) contributed to a considerable strengthening of the aluminum matrix when processing it by the method of equal channel angular pressing, but at the same time reduced the plastic properties. Samples alloyed with 2% Cu demonstrate the maximum strength and minimum ductility.


2021 ◽  
Vol 340 ◽  
pp. 01008
Author(s):  
Natalya S. Shevchenko ◽  
Alexey A. Gusev

Pb2MgWO6 was prepared using mechanochemical activation and sintering in a temperature range of 600-1000ºÑ in three ways: 1) from oxides of the corresponding metals, 2) using MgWO4 precursor; and 3) in the presence of over-stoichiometric amounts (1wt.% and 2wt.% ) of Li2CO3 alloying additive.


2020 ◽  
pp. 17-20
Author(s):  
N. I. Gabelchenko ◽  
A. A. Belov ◽  
N. A. Kidalov ◽  
A. I. Gabelchenko

The work is devoted to improvement of mechanical properties of iron castings via adjusting of the cooling rate without introduction of alloying additives. The new technological solution is suggested; it can be easily adapted to a casting technology. This solution is based on variation of the cooling rate of iron castings within structurally sensitive solidification intervals. For this purpose, the casting mould was initially cooled after pouring, then heated and cooled again. Cooling of the mould during the period of primary austenite crystal forming led to increase of dendrite crystallization rate and was executed using compressed air. Retarding of the cooling rate during the period of eutectic transformation was provided by the mould heating via burning of exothermic carbon-containing additives introduced in a facing layer of sand-clay moulding mix. Burning reaction is accompanied by heat extraction, what steeply retarded the cooling rate within the interval of eutectic transformation. Consequent acceleration of castings cooling within the interval of eutectoid transformation was achieved via repeated air blowing through a worked reaction layer. Adjusted cooling of iron castings allowed to provide the most favourable solidification conditions, taking into account strictly individual requirements for each structurally sensitive temperature intervals. It led to increase of a volumetric part of primary austenite dendrite crystals, to decrease of eutectic transformation overcooling degree, to forming of graphite eutectics and enlargement of dispersity of pearlite component in iron. Consequently, lowering of widespread iron castings rejects takes place, among them chilling, with simultaneous improvement of metal mechanical properties. As a result, the primary and real structures were varied, what had a positive effect on mechanical properties of casting metal. It is shown that use of solidification rate adjustment led to essential increase of metal tensile strength for the experimental casting.


Sign in / Sign up

Export Citation Format

Share Document