behavioral excitation
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 0)

H-INDEX

10
(FIVE YEARS 0)

1987 ◽  
Vol 92 (3) ◽  
pp. 393-397 ◽  
Author(s):  
M. Poncelet ◽  
L. Dangoumau ◽  
P. Soubri� ◽  
P. Simon

1981 ◽  
Vol 72 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Gregory N. Ervin ◽  
Stepanie A. Schmitz ◽  
Charles B. Nemeroff ◽  
Arthur J. Prange

1980 ◽  
Vol 58 (8) ◽  
pp. 896-902 ◽  
Author(s):  
M. T. Lin ◽  
A. Chandra ◽  
Y. F. Chern ◽  
B. L. Tsay

The effects of intracerebroventricular (i.c.v.) injections of sympathomimetic drugs on thermoregulatory functions in conscious rats maintained at low (8 °C), moderate (22 °C), and high (30 °C) ambient temperatures were assessed. Norepinephrine, tyramine, and ephedrine each produced hypothermia at ambient temperature (Ta) 8 °C and hyperthermia at Ta 22 and 30 °C. At Ta 8 °C, the hypothermia in response to norepinephrine, tyramine, and ephedrine was due to decreased metabolic rate (M) whereas at Ta 22 °C the hyperthermia was due to cutaneous vasoconstriction. At Ta 22 °C, the hyperthermia in response to norepinephrine and tyramine was due to cutaneous vasoconstriction whereas the hyperthermia in response to ephedrine was brought about by increased M (due to behavioral excitation). Intracerebroventricular injection of epinephrine produced hypothermia followed by hyperthermia at Ta 8 and 22 °C. The hypothermia was due to decreased M whereas the hyperthermia was due to cutaneous vasoconstriction and increased M. At Ta 30 °C, epinephrine led to a reduction in cutaneous temperature and hyperthermia. Furthermore, i.c.v. administration of phenylephrine produced a decreased M and hypothermia at Ta, 8 °C and an increased M (due to behavioral excitation) and hyperthermia at Ta 30 °C. At Ta 22 °C, phenylephrine produced hyperthermia (due to cutaneous vasoconstriction and increased M) preceded by hypothermia (due to decreased M). Moreover, the temperature effects induced by norepinephrine were antagonized by pretreatment with the adrenoceptor antagonist phentolamine. In general, the data indicate that activation of central adrenoceptors with sympathomimetic drugs inhibits both heat production and heat loss mechanisms in the rat.


1980 ◽  
Vol 58 (8) ◽  
pp. 956-964 ◽  
Author(s):  
M. T. Lin

The effects of the catecholamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) on the thermoregulatory responses of conscious rabbits to different ambient temperatures (Ta) (2, 22, and 32 °C) were assessed. Intravenous administration of L-DOPA alone, intravenous administration of L-DOPA plus R04-4602 (a peripheral decarboxylase inhibitor), and intraventricular administration of L-DOPA or norepinephrine all produced a hypothermia at Ta 2 °C. The hypothermia was due to a decrease in metabolic heat production (M). On the other hand, L-DOPA or norepinephrine produced both behavioral excitation and hyperthermia at both Ta 22 and 32 °C. At Ta 22 °C, the hyperthermia was due to decreased ear skin blood flow (EBF) and slightly increased M (due to behavioral excitation) whereas at Ta 32 °C the hyperthermia was due to decreased EBF, decreased respiratory evaporative heat loss, and slightly increased M (due to behavioral excitation). Further, the temperature effects induced by L-DOPA were antagonized by pretreatment with 6-hydroxydopamine (a relative depletor of catecholaminergic nerve fibers) but not with haloperidol (a relative blocker of dopaminergic receptors). The data indicate that activation of central adrenergic receptors via the endogenous release of norepinephrine with L-DOPA inhibits both heat production and heat loss mechanisms in the rabbit.


1980 ◽  
Vol 58 (8) ◽  
pp. 903-908 ◽  
Author(s):  
M. T. Lin ◽  
A. Chandra ◽  
Y. F. Chern ◽  
B. L. Tsay

Systemic and central administration of d-amphetamine both produced dose-dependent hypothermia in the rat at ambient temperature (Ta) 8 °C. The hypothermia was brought about solely by a decrease in metabolic heat production. However, at both Ta 22 and 30 °C, d-amphetamine produced hyperthermia accompanied by behavioral excitation. The hyperthermia was due to cutaneous vasoconstriction and increased metabolic heat production (due to behavioral excitation) at Ta 22 °C, whereas at Ta 30 °C the hyperthermia was due to cutaneous vasoconstriction, decreased respiratory evaporative heat loss, and increased metabolism (due to behavioral excitation). Furthermore, both the thermal and the behavioral responses induced by d-amphetamine were antagonized by pretreatment with intracerebroventricular administration of 6-hydroxydopamine (a depletor of central catecholaminergic nerve fibers). The data indicate that, by eliminating the interference of behavioral responses induced, d-amphetamine leads to an alteration in body temperature of rats by decreasing both metabolic heat production and sensible heat loss, probably via the activation of central catecholaminergic receptors.


1977 ◽  
Vol 55 (2) ◽  
pp. 234-242 ◽  
Author(s):  
M. Rezek ◽  
V. Havlicek ◽  
L. Leybin ◽  
C. Pinsky ◽  
E. A. Kroeger ◽  
...  

The administration of small doses of somatostatin (SRIF) (0.01 and 0.1 μg) into the neostriatal complex of unrestrained, freely moving rats induced general behavioral excitation associated with a variety of stereotyped movements, tremors, and a reduction of rapid eye movements (REM) and deep slow wave sleep (SWS). In contrast, the higher doses of SRIF (1.0 and 10.0 μg) caused movements to be uncoordinated and frequently induced more severe difficulties in motor control such as contralateral hemiplegia-in-extension which restricted or completely prevented the expression of normal behavioral patterns. As a result, the animals appeared drowsy and inhibited. Analysis of the sleep-waking cycle revealed prolonged periods of a shallow SWS while REM sleep and deep SWS were markedly reduced; electroencephalogram recordings revealed periods of dissociation from behavior. The administration of endocrinologically inactive as well as the active analogues of SRIF failed to induce effects comparable with those observed after the administration of the same dose of the native hormone (10.0 μg).


Sign in / Sign up

Export Citation Format

Share Document