local accumulation
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 33)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jie Liu ◽  
Roberta Ghelli ◽  
Maura Cardarelli ◽  
Markus Geisler

AbstractDespite clear evidence that a local accumulation of auxin is likewise critical for male fertility, much less is known about the components that regulate auxin-controlled stamen development.In this study, we analyzed physiological and morphological parameters in mutants of key players of ABCB-mediated auxin transport and spatially and temporally dissected their expression on the protein level as well as auxin fluxes in the Arabidopsis stamens. Our analyses revealed that the FKBP42, TWISTED DWARF1 (TWD1), promotes stamen elongation and, to a lesser extent, anther dehiscence, as well as pollen maturation and thus is required for seed development. Most of the described developmental defects in twd1 are shared with the abcb1 abcb19 mutant, which can be attributed to the fact that TWD1 - as a described ABCB chaperon - is a positive regulator of ABCB1 and ABCB19-mediated auxin transport. However, reduced stamen number was dependent on TWD1 but not on investigated ABCBs, suggesting additional actors down-stream of TWD1. We predict an overall housekeeping function for ABCB1 during earlier stages, while ABCB19 seems to be responsible for the key event of rapid elongation at later stages of stamen development. Our data indicate that TWD1 controls stamen development by differential activation of ABCB-mediated auxin transport in the stamen.HighlightBy using a mix of phenotypical and imaging analyses, we here identify and functionally characterize a new master regulator of flower development.


2021 ◽  
Author(s):  
José Antonio Villaécija-Aguilar ◽  
Caroline Körösy ◽  
Lukas Maisch ◽  
Maxime Hamon-Josse ◽  
Andrea Petrich ◽  
...  

Author(s):  
Jie Liu ◽  
Roberta Ghelli ◽  
Maura Cardarelli ◽  
Markus Geisler

Despite clear evidence that a local accumulation of auxin is likewise critical for floral organ initiation than for vegetative tissues, much less is known about the molecular key players that regulate auxin-controlled flower development. Here, by an analysis of physiological and morphological parameters and by a spatial and temporal dissection of auxin fluxes and expression of key players of ABCB-mediated auxin transport in the Arabidopsis flower, we demonstrate a crucial role for the FKBP42, TWISTED DWARF1 (TWD1), in the regulation of flower development. Our analyses revealed that TWD1 promotes flower shape and number, stamen elongation, pollen maturation, nectary functionality and seed development. Most of the described developmental defects in twd1 are shared with the abcb1 abcb19 mutant, which can be attributed to the fact that TWD1 as a described ABCB chaperon is a positive regulator of ABCB1 and ABCB19-mediated auxin transport. We predict an overall housekeeping function for ABCB1 during earlier stages, while ABCB19 seems to be responsible for the key event of rapid elongation at later stages of stamen development. Our data indicate that TWD1 controls flower development by differential activation of ABCB-mediated auxin transport.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Adria Razzauti ◽  
Patrick Laurent

Cilia are sensory organelles protruding from cell surfaces. Release of extracellular vesicles (EVs) from cilia was previously observed in mammals, Chlamydomonas, and in male Caenorhabditis elegans. Using the EV marker TSP-6 (an ortholog of mammalian CD9) and other ciliary receptors, we show that EVs are formed from ciliated sensory neurons in C. elegans hermaphrodites. Release of EVs is observed from two ciliary locations: the cilia tip and/or periciliary membrane compartment (PCMC). Outward budding of EVs from the cilia tip leads to their release into the environment. EVs’ budding from the PCMC is concomitantly phagocytosed by the associated glial cells. To maintain cilia composition, a tight regulation of cargo import and removal is achieved by the action of intra-flagellar transport (IFT). Unbalanced IFT due to cargo overexpression or mutations in the IFT machinery leads to local accumulation of ciliary proteins. Disposal of excess ciliary proteins via EVs reduces their local accumulation and exports them to the environment and/or to the glia associated to these ciliated neurons. We suggest that EV budding from cilia subcompartments acts as a safeguard mechanism to remove deleterious excess of ciliary material.


2021 ◽  
Vol 331 ◽  
pp. e58
Author(s):  
E. Chegodaev ◽  
N. Nikiforov ◽  
D. Zlenko ◽  
A.N. Orekhov ◽  
E. Ivanova

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Frédérique Depierreux ◽  
Eric Parmentier ◽  
Laurane Mackels ◽  
Katherine Baquero ◽  
Christian Degueldre ◽  
...  

AbstractParkinson’s disease (PD) is a neurodegenerative synucleinopathy characterized by the degeneration of neuromelanin (NM)-containing dopaminergic neurons and deposition of iron in the substantia nigra (SN). How regional NM loss and iron accumulation within specific areas of SN relate to nigro-striatal dysfunction needs to be clarified. We measured dopaminergic function in pre- and postcommissural putamen by [18F]DOPA PET in 23 Parkinson’s disease patients and 23 healthy control (HC) participants in whom NM content and iron load were assessed in medial and lateral SN, respectively, by NM-sensitive and quantitative R2* MRI. Data analysis consisted of voxelwise regressions testing the group effect and its interaction with NM or iron signals. In PD patients, R2* was selectively increased in left lateral SN as compared to healthy participants, suggesting a local accumulation of iron in Parkinson’s disease. By contrast, NM signal differed between PD and HC, without specific regional specificity within SN. Dopaminergic function in posterior putamen decreased as R2* increased in lateral SN, indicating that dopaminergic function impairment progresses with iron accumulation in the SN. Dopaminergic function was also positively correlated with NM signal in lateral SN, indicating that dopaminergic function impairment progresses with depigmentation in the SN. A complex relationship was detected between R2* in the lateral SN and NM signal in the medial SN. In conclusion, multimodal imaging reveals regionally specific relationships between iron accumulation and depigmentation within the SN of Parkinson’s disease and provides in vivo insights in its neuropathology.


2021 ◽  
Vol 15 ◽  
Author(s):  
Samantha J. Wilkison ◽  
Cora L. Bright ◽  
Ricardo Vancini ◽  
Daniel J. Song ◽  
Howard M. Bomze ◽  
...  

Mitochondria are essential for neurons and must be optimally distributed along their axon to fulfill local functions. A high density of mitochondria has been observed in retinal ganglion cell (RGC) axons of an unmyelinated region of the optic nerve, called the glial lamina (GL) in mouse (lamina cribrosa in human). In glaucoma, the world's leading cause of irreversible blindness, the GL is the epicenter of RGC degeneration and is connected to mitochondrial dysfunction. It is generally accepted that the local accumulation of mitochondria in the GL is established due to the higher energy requirement of unmyelinated axons. Here we revisit the connection between mitochondrial positioning and myelin in RGC axons. We show that the high density of mitochondria in the GL is restricted to larger axons and is established before myelination. Thus, contrary to a longstanding belief in the field, the myelination pattern is not responsible for the establishment of the local accumulation of mitochondria in GL axons. Our findings open new research avenues likely critical to understanding the pathophysiology of glaucoma.


2021 ◽  
Vol 39 (3) ◽  
pp. 455-460
Author(s):  
Osuke Saka

Abstract. As proposed by Saka (2019), plasma injections arising out of the auroral ionosphere (ionospheric injection) are a characteristic process of the polar ionosphere at substorm onset. The ionospheric injection is triggered by westward electric fields transmitted from the convection surge in the magnetosphere at field line dipolarization. Localized westward electric fields result in local accumulation of ionospheric electrons and ions, which produce local electrostatic potentials in the auroral ionosphere. Field-aligned electric fields are developed to extract excess charges from the ionosphere. This process is essential to the equipotential equilibrium of the auroral ionosphere. Cold electrons and ions that evaporate from the auroral ionosphere by ionospheric injection tend to generate electrostatic parallel potential below an altitude of 10 000 km. This is a result of charge separation along the mirror fields introduced by the evaporated electrons and ions moving earthward in phase space.


Author(s):  
Francesca Finetti ◽  
Chiara Cassioli ◽  
Valentina Cianfanelli ◽  
Fabrizia Zevolini ◽  
Anna Onnis ◽  
...  

Lymphocyte homeostasis, activation and differentiation crucially rely on basal autophagy. The fine-tuning of this process depends on autophagy-related (ATG) proteins and their interaction with the trafficking machinery that orchestrates the membrane rearrangements leading to autophagosome biogenesis. The underlying mechanisms are as yet not fully understood. The intraflagellar transport (IFT) system, known for its role in cargo transport along the axonemal microtubules of the primary cilium, has emerged as a regulator of autophagy in ciliated cells. Growing evidence indicates that ciliogenesis proteins participate in cilia-independent processes, including autophagy, in the non-ciliated T cell. Here we investigate the mechanism by which IFT20, an integral component of the IFT system, regulates basal T cell autophagy. We show that IFT20 interacts with the core autophagy protein ATG16L1 and that its CC domain is essential for its pro-autophagic activity. We demonstrate that IFT20 is required for the association of ATG16L1 with the Golgi complex and early endosomes, both of which have been identified as membrane sources for phagophore elongation. This involves the ability of IFT20 to interact with proteins that are resident at these subcellular localizations, namely the golgin GMAP210 at the Golgi apparatus and Rab5 at early endosomes. GMAP210 depletion, while leading to a dispersion of ATG16L1 from the Golgi, did not affect basal autophagy. Conversely, IFT20 was found to recruit ATG16L1 to early endosomes tagged for autophagosome formation by the BECLIN 1/VPS34/Rab5 complex, which resulted in the local accumulation of LC3. Hence IFT20 participates in autophagosome biogenesis under basal conditions by regulating the localization of ATG16L1 at early endosomes to promote autophagosome biogenesis. These data identify IFT20 as a new regulator of an early step of basal autophagy in T cells.


Sign in / Sign up

Export Citation Format

Share Document