Effect of Sodium Nitroprusside on Physiological Traits and Grain Yield of Oilseed Rape (Brassica napus L.) Under Different Irrigation Regimes

2021 ◽  
Author(s):  
Mahdieh Sheikhaliyan ◽  
Yousef Sohrabi ◽  
Farzad Hossainpanahi ◽  
Amihossain ShiraniRad
2010 ◽  
Vol 105 (3) ◽  
pp. 388-394 ◽  
Author(s):  
A. Istanbulluoglu ◽  
B. Arslan ◽  
E. Gocmen ◽  
E. Gezer ◽  
C. Pasa

2010 ◽  
Vol 46 (No. 1) ◽  
pp. 27-34 ◽  
Author(s):  
T. Abedi ◽  
H. Pakniyat

The study was undertaken to identify the responses of antioxidant enzyme activities and their isozyme patterns in seedlings of 10 oilseed rape (Brassica napus L.) cultivars under drought stress conditions. Plants were grown under three irrigation regimes (FC; field capacity, 60% FC and 30% FC) in a greenhouse. Drought stress preferentially enhanced the activities of superoxide dismutase (SOD) and guaiacol peroxidase (POD) whereas it decreased catalase (CAT) activity. Licord with the highest level of enzyme activity under both optimum and limited irrigation regimes is reported as the most tolerant cultivar. Whereas Hyola 308 and Okapy, having the lowest enzymes activities, are mentioned as cultivars sensitive to drought stress. The native polyacrylamide gel electrophoresis (PAGE) analysis detected eight SOD isozymes. Oilseed rape leaves contained three isoforms of Mn-SOD and five isoforms of Cu/Zn-SOD. The expression of Mn-SOD was preferentially enhanced by drought stress. Five POD isoforms were detected in oilseed rape leaves. The intensities of POD-4 and -5 were enhanced under drought stress. According to the results, the appearance of new isozyme bands under drought stress conditions may be used as a biochemical marker to differentiate drought tolerant cultivars under drought stress.


2020 ◽  
Vol 21 (22) ◽  
pp. 8740
Author(s):  
Daria Chlebek ◽  
Artur Pinski ◽  
Joanna Żur ◽  
Justyna Michalska ◽  
Katarzyna Hupert-Kocurek

Endophytic bacteria hold tremendous potential for use as biocontrol agents. Our study aimed to investigate the biocontrol activity of Pseudomonas fluorescens BRZ63, a new endophyte of oilseed rape (Brassica napus L.) against Rhizoctonia solani W70, Colletotrichum dematium K, Sclerotinia sclerotiorum K2291, and Fusarium avenaceum. In addition, features crucial for biocontrol, plant growth promotion, and colonization were assessed and linked with the genome sequences. The in vitro tests showed that BRZ63 significantly inhibited the mycelium growth of all tested pathogens and stimulated germination and growth of oilseed rape seedlings treated with fungal pathogens. The BRZ63 strain can benefit plants by producing biosurfactants, siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia as well as phosphate solubilization. The abilities of exopolysaccharide production, autoaggregation, and biofilm formation additionally underline its potential to plant colonization and hence biocontrol. The effective colonization properties of the BRZ63 strain were confirmed by microscopy observations of EGFP-expressing cells colonizing the root surface and epidermal cells of Arabidopsis thaliana Col-0. Genome mining identified many genes related to the biocontrol process, such as transporters, siderophores, and other secondary metabolites. All analyses revealed that the BRZ63 strain is an excellent endophytic candidate for biocontrol of various plant pathogens and plant growth promotion.


Planta ◽  
2004 ◽  
Vol 221 (3) ◽  
pp. 328-338 ◽  
Author(s):  
Jens Tilsner ◽  
Nina Kassner ◽  
Christine Struck ◽  
Gertrud Lohaus

1997 ◽  
Vol 150 (4) ◽  
pp. 414-419 ◽  
Author(s):  
Jeroen A. Wilmer ◽  
Johannes P.F.G. Helsper ◽  
Linus H.W. van der Plas

Sign in / Sign up

Export Citation Format

Share Document