porcine insulin
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 4)

H-INDEX

29
(FIVE YEARS 1)

2020 ◽  
Vol 2 (1) ◽  
pp. 45

The study focuses on the anti-diabetic activity by molecular simulation of Recombinant Insulin, Porcine Insulin, and Glycogen. The sequence of these three molecules was retrieved, and 3D structures were modeled. A total of two different molecular simulations were carried out. The simulations were done using Autodock software. Initially, the downloaded PDB structures were docked with glycogen and the second between the active site peptide models of both insulin molecules based on castP prediction with glycogen molecule. The results were analyzed by the Ramachandran plot for model prediction, and the binding energy was set as criteria to determine the best-docked model. The binding energy of recombinant insulin, porcine insulin with glycogen was 0.32 and -1.09, respectively. Similarly, the binding energy for peptide models with a glycogen molecule was found to be +1.09 and +6.76, respectively. Based on the results, it was concluded that recombinant insulin has a higher affinity than porcine insulin.


Peptides ◽  
2020 ◽  
Vol 127 ◽  
pp. 170278
Author(s):  
Shichun Li ◽  
Bo Shi ◽  
Kexin Huang ◽  
Ying Wang

Author(s):  
Dmitri V. Alexandrov ◽  
Irina G. Nizovtseva

A generalized theory of nucleation and growth of crystals in a metastable (supercooled or supersaturated) liquid is developed taking into account two principal effects: the diffusion mechanism of the particle-size distribution function in the space of particle radii and the unsteady-state growth rates of individual crystals induced by fluctuations in external temperature or concentration field. A system of the Fokker–Planck and balance integro-differential equations is formulated and analytically solved in a parametric form for arbitrary nucleation kinetics and arbitrary growth rates of individual crystals. The particle-size distribution function and system metastability are found in an explicit form. The Weber–Volmer–Frenkel–Zel'dovich and Meirs kinetic mechanisms, as well as the unsteady-state growth rates of nuclei (Alexandrov & Alexandrova 2019 Phil. Trans. R. Soc. A 377 , 20180209 ( doi:10.1098/rsta.2018.0209 )), are considered as special cases. Some potential biomedical applications of the present theory for crystal growth from supersaturated solutions are discussed. The theory is compared with experimental data on protein and insulin crystallization (growth dynamics of the proteins lysozyme and canavalin as well as of bovine and porcine insulin is considered). The hat-shaped particle-size distribution functions for lysozyme and canavalin crystals as well as for bovine and porcine insulin are found. This article is part of the theme issue ‘Heterogeneous materials: metastable and non-ergodic internal structures’.


2018 ◽  
Vol 58 (11) ◽  
pp. 1976 ◽  
Author(s):  
Amalia Simonetti ◽  
Andrea Rando ◽  
Paola Di Gregorio ◽  
Carmelisa Valluzzi ◽  
Annamaria Perna ◽  
...  

The aim of this study was to analyse the polymorphisms in the two promoter regions, P1 and P2, of the porcine Insulin-like Growth Factor 2 (IGF2) gene and to investigate the effect of IGF2 genotypes on meat quality traits in the Italian autochthonous Suino Nero Lucano pig. Three polymorphic sites were analysed and only two of the eight potential haplotypes were observed in the Suino Nero Lucano pig population: A haplotype (–366A – –225G – –182C), and B haplotype (–366G – –225C – –182T). Muscle mass and meat quality characteristics were analysed in 30 castrated pigs (10 for each of the three IGF2 genotypes: A/A, A/B, and B/B). According to the results, B/B animals, at the same carcass weight, showed the highest Longissimus lumborum and Psoas weight (P < 0.05), whereas A/A animals showed a higher intramuscular fat percentage and lower Warner–Bratzler shear force, drip loss, and polyunsaturated fatty acids content. Meat from B/B animals showed also a higher L* value and myoglobin and deoxymyoglobin percentage compared with meat from A/A ones (P < 0.05).


Sign in / Sign up

Export Citation Format

Share Document