tail protein
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 17)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Qianwen Gong ◽  
Xuhang Wang ◽  
Haosheng Huang ◽  
Yu Sun ◽  
Xinjie Qian ◽  
...  

K1 capsule-specific phages of Escherichia coli have been reported in recent years, but the molecular mechanism involved in host recognition of these phages remains unknown. In this study, the interactions between PNJ1809-36, a new K1-specific phage and its host bacteria E. coli DE058, were investigated. A transposon mutation library was used to screen for receptor-related genes. Gene deletion, lysis curve determination, plaque formation test, adsorption assay and inhibition assay of phage by lipopolysaccharide (LPS) showed that capsular polysaccharide (CPS) was the first receptor for the initial adsorption of PNJ1809-36 to E. coli DE058 and LPS was a secondary receptor for the irreversible binding of the phage. The penultimate galactose in the outer core was identified as the specific binding region on LPS. Through antibody blocking assay, fluorescence labeling and high-performance gel permeation chromatography (HPGPC), the tail protein ORF261 of phage PNJ1809-36 was identified as the receptor binding protein on CPS. Given these findings, we propose a model for the recognition process of phage PNJ1809-36 on E. coli DE058: The phage PNJ1809-36 tail protein ORF261 recognizes and adsorbs to the K1 capsule; then the K1 capsule is partially degraded, exposing the active site of LPS which is recognized by phage PNJ1809-36. This model provides insight into the molecular mechanisms between K1-specific phages and their host bacteria. IMPORTANCE It has been speculated that CPS is the main receptor of K1-specific phages belonging to Siphoviridae . In recent years, a new type of K1-specific phage belonging to Myoviridae has been reported, but its host recognition mechanisms remain unknown. Here, we studied the interactions between PNJ1809-36, a new type of K1 phage, and its host bacteria E. coli DE058. Our research showed that the phage initially adsorbed to the K1 capsule mediated by ORF261 and then bound to the penultimate galactose of LPS to begin the infection process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anja Steudle ◽  
Dirk Spann ◽  
Eva Pross ◽  
Sri Karthika Shanmugam ◽  
Ross E. Dalbey ◽  
...  

AbstractThe membrane insertase YidC inserts newly synthesized proteins by its hydrophobic slide consisting of the two transmembrane (TM) segments TM3 and TM5. Mutations in this part of the protein affect the insertion of the client proteins. We show here that a quintuple mutation, termed YidC-5S, inhibits the insertion of the subunit a of the FoF1 ATP synthase but has no effect on the insertion of the Sec-independent M13 procoat protein and the C-tail protein SciP. Further investigations show that the interaction of YidC-5S with SecY is inhibited. The purified and fluorescently labeled YidC-5S did not approach SecYEG when both were co-reconstituted in proteoliposomes in contrast to the co-reconstituted YidC wild type. These results suggest that TM3 and TM5 are involved in the formation of a common YidC-SecYEG complex that is required for the insertion of Sec/YidC-dependent client proteins.


2021 ◽  
Vol 292 ◽  
pp. 198219
Author(s):  
Bryan P. Brown ◽  
Denis Chopera ◽  
Enock Havyarimana ◽  
Jerome Wendoh ◽  
Shameem Jaumdally ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jos J. A. Trentelman ◽  
Radek Sima ◽  
Nicolas Krezdorn ◽  
Julen Tomás-Cortázar ◽  
Diego Barriales ◽  
...  

AbstractIxodes ricinus is the vector for Borrelia afzelii, the predominant cause of Lyme borreliosis in Europe, whereas Ixodes scapularis is the vector for Borrelia burgdorferi in the USA. Transcription of several I. scapularis genes changes in the presence of B. burgdorferi and contributes to successful infection. To what extend B. afzelii influences gene expression in I. ricinus salivary glands is largely unknown. Therefore, we measured expression of uninfected vs. infected tick salivary gland genes during tick feeding using Massive Analysis of cDNA Ends (MACE) and RNAseq, quantifying 26.179 unique transcripts. While tick feeding was the main differentiator, B. afzelii infection significantly affected expression of hundreds of transcripts, including 465 transcripts after 24 h of tick feeding. Validation of the top-20 B. afzelii-upregulated transcripts at 24 h of tick feeding in ten biological genetic distinct replicates showed that expression varied extensively. Three transcripts could be validated, a basic tail protein, a lipocalin and an ixodegrin, and might be involved in B. afzelii transmission. However, vaccination with recombinant forms of these proteins only marginally altered B. afzelii infection in I. ricinus-challenged mice for one of the proteins. Collectively, our data show that identification of tick salivary genes upregulated in the presence of pathogens could serve to identify potential pathogen-blocking vaccine candidates.


2020 ◽  
Vol 58 (4) ◽  
pp. 475-479
Author(s):  
Amornrat Geadkaew-Krenc ◽  
Rudi Grams ◽  
Wansika Phadungsil ◽  
Wanlapa Chaibangyang ◽  
Nanthawat Kosa ◽  
...  

Tegumental and excretory-secretory proteins are reported as diagnostic antigens for human opisthorchiasis. Rhophilin associated tail protein1-like (OvROPN1L) protein of Opisthorchis viverrini sperm tail showed potential as a diagnostic antigen. The OvROPN1L recombinant fragments were assayed for diagnostic antigenicity for human opisthorchiasis using indirect ELISA. The strongest antigenic region was a N-terminus peptide of M1 - P56. One synthetic peptide (P1, L3-Q13) of this region showed the highest antigenicity to opisthorchiasis. Sera from other parasitic infections including Strongyloides stercoralis, hookworm, Taenia spp, minute intestinal flukes, Paragonimus spp showed lower reactivity to P1. Peptide P1 is located in the disordered N-terminus of ROPN1L supporting its suitability as linear epitope. In the Platyhelminthes the N-terminal sequence of ROPN1L is diverging with taxonomic distance further suggesting that peptide P1 has potential as diagnostic tool in the genus Opisthorchis/Clonorchis. It should be further evaluated in combination with peptides derived from other O. viverrini antigens to increase its diagnostic power.


2020 ◽  
Vol 34 (8) ◽  
pp. 9959-9971
Author(s):  
Qinghua Liu ◽  
Xinjian Huang ◽  
Qingyuan Li ◽  
Lixin He ◽  
Siqi Li ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 512 ◽  
Author(s):  
Adeline Goulet ◽  
Silvia Spinelli ◽  
Jennifer Mahony ◽  
Christian Cambillau

Bacteriophages can play beneficial roles in phage therapy and destruction of food pathogens. Conversely, they play negative roles as they infect bacteria involved in fermentation, resulting in serious industrial losses. Siphoviridae phages possess a long non-contractile tail and use a mechanism of infection whose first step is host recognition and binding. They have evolved adhesion devices at their tails’ distal end, tuned to recognize specific proteinaceous or saccharidic receptors on the host’s surface that span a large spectrum of shapes. In this review, we aimed to identify common patterns beyond this apparent diversity. To this end, we analyzed siphophage tail tips or baseplates, evaluating their known structures, where available, and uncovering patterns with bioinformatics tools when they were not. It was thereby identified that a triad formed by three proteins in complex, i.e., the tape measure protein (TMP), the distal tail protein (Dit), and the tail-associated lysozyme (Tal), is conserved in all phages. This common scaffold may harbor various functional extensions internally while it also serves as a platform for plug-in ancillary or receptor-binding proteins (RBPs). Finally, a group of siphophage baseplates involved in saccharidic receptor recognition exhibits an activation mechanism reminiscent of that observed in Myoviridae.


2020 ◽  
Vol 21 (5) ◽  
pp. 1894 ◽  
Author(s):  
Jennifer E.G. Gallagher ◽  
Suk Lan Ser ◽  
Michael C. Ayers ◽  
Casey Nassif ◽  
Amaury Pupo

The Mediator is composed of multiple subunits conserved from yeast to humans and plays a central role in transcription. The tail components are not required for basal transcription but are required for responses to different stresses. While some stresses are familiar, such as heat, desiccation, and starvation, others are exotic, yet yeast can elicit a successful stress response. 4-Methylcyclohexane methanol (MCHM) is a hydrotrope that induces growth arrest in yeast. We found that a naturally occurring variation in the Med15 allele, a component of the Mediator tail, altered the stress response to many chemicals in addition to MCHM. Med15 contains two polyglutamine repeats (polyQ) of variable lengths that change the gene expression of diverse pathways. The Med15 protein existed in multiple isoforms and its stability was dependent on Ydj1, a protein chaperone. The protein level of Med15 with longer polyQ tracts was lower and turned over faster than the allele with shorter polyQ repeats. MCHM sensitivity via variation of Med15 was regulated by Snf1 in a Myc-tag-dependent manner. Tagging Med15 with Myc altered its function in response to stress. Genetic variation in transcriptional regulators magnified genetic differences in response to environmental changes. These polymorphic control genes were master variators.


Sign in / Sign up

Export Citation Format

Share Document