clay mineral composition
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 6)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Hicham El Boudour El Idrissi

This paper investigates the main parameters influencing the plastic behavior of clays used for traditional ceramics production. For this, twenty-six clayey pastes were selected from twelve traditional ceramic plants around the city of Marrakech (Morocco). According to the lithology, six different types of materials are used as raw material in the ceramic industry of this region. Emphasis is placed on the impact of the characteristics of these clayey materials upon the plastic behavior of these clays. The pastes were characterized through their consistency using the Atterberg limits. It has been concluded that the gain size, the mineralogical and the clay mineral composition and content, the effect of diagenesis and the presence of talc-pyrophyllite association play the most important role in the control of the plasticity behavior.


2021 ◽  
Vol 09 (07) ◽  
pp. 192-208
Author(s):  
Basuki Rahmad ◽  
Gerhana Prasetya ◽  
Sugeng   ◽  
Ediyanto   ◽  
Muchamad Ocky Bayu Nugroho ◽  
...  

2020 ◽  
Author(s):  
Irina Tanuwidjaja ◽  
Cordula Vogel ◽  
Geertje J. Pronk ◽  
Anne Schöler ◽  
Susanne Kublik ◽  
...  

Abstract Nutrient turnover in soils is strongly driven by soil properties, including clay mineral composition. One main nutrient is phosphorus (P), which is known to be easily immobilized in soil. Therefore, the specific surface characteristics of clay minerals might substantially influence P availability in soil and thus the microbial strategies for accessing P pools. We used a metagenomic approach to analyze the microbial potential to access P after 842 days of incubation in artificial soils with a clay mineral composition of either non-expandable illite (IL) or expandable montmorillonite (MT), which differ in their surface characteristics like soil surface area and surface charge. Our data indicate that microorganisms of the two soils developed different strategies to overcome P depletion, resulting in similar total P concentrations. Genes predicted to encode inorganic pyrophosphatase (ppa), exopolyphosphatase (ppx), and the pstSCAB transport system were higher in MT, suggesting effective P uptake and the use of internal poly-P stores. Genes predicted to encode enzymes involved in organic P turnover like alkaline phosphatases (phoA, phoD) and glycerophosphoryl diester phosphodiesterase were detected in both soils in comparable numbers. In addition, Po concentrations did not differ significantly. Most identified genes were assigned to microbial lineages generally abundant in agricultural fields, but some were assigned to lineages known to include oligotrophic specialists, such as Bacillaceae and Microchaetaceae.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 153 ◽  
Author(s):  
Jaewoo Jung ◽  
Kyu-Cheul Yoo ◽  
Kee-Hwan Lee ◽  
Young Park ◽  
Jae Lee ◽  
...  

Variations in grain size, clay mineral composition, and stable isotopes (δ13C and δ15N) are closely linked to the sedimentary facies that reflect mineralogical and geochemical modification during the retreat and advance of the Larsen ice shelf. A whole round core of marine sediment (EAP13-GC17, 236 cm below the sea floor) was collected on the northwestern Larsen B embayment of the Antarctic Peninsula during a marine geological expedition (the ARA13 Cruise Expedition by the Korea Polar Research Institute, 2013). Four sedimentary facies (U1–U4) were clearly distinguishable: bioturbated sandy mud (open marine, U1), laminated sandy mud (sub–floating ice shelf, U2), sandy clay aggregates (deglacial, U3), and muddy diamictons (sub-glacial, U4), as well as interbedded silty. Clay minerals, including smectite, chlorite, illite, and kaolinite, were detected throughout the core. An increase in the clay mineral ratio of smectite/(illite + chlorite) was clearly observed in the open marine condition, which was strongly indicated by both a heavier isotopic composition of δ13C and δ15N (−24.4‰ and 4.3‰, respectively), and an abrupt increase in 10Be concentration (~30 times). An increase in the average values of the crystal packet thickness of illite (~1.5 times) in U1 also indicated sediments transported in open marine conditions. Based on the clay mineral composition in U1, the sediments are likely to have been transported from the Weddell Sea. The clay mineralogical assessments conducted in this region have significant implications for our understanding of paleodepositional environments.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3317 ◽  
Author(s):  
Shan Jiang ◽  
Pingping Liang ◽  
Yujiao Han

Low-salinity water (LSW) flooding technology has obvious operational and economic advantages, so it is applied to practice in many oilfields. However, there are differences in the oil recovery efficiencies in different oilfields, the reasons for which need to be further studied and discussed. This paper studies the effect of different clay mineral compositions on low-salinity water flooding. For this purpose, three groups of core displacement experiments were designed with cores containing different clay mineral compositions for comparison. In the process of formation water and low-salinity water driving, the oil recovery and produced-water properties were measured. By comparing the two types of water flooding, it was found that the cores with the highest montmorillonite content had the best effect (5.7%) on low-salinity water flooding and the cores with the highest kaolinite content had the least effect (1.9%). This phenomenon is closely related to the difference in ion exchange capacity of the clay minerals. Moreover, after switching to low-salinity water flooding, the interfacial tension and wetting angle of the produced-water increased and the value of pH decreased, which are important mechanisms for enhancing oil recovery by low-salinity water flooding. This study reveals the influence of clay mineral composition on low-salinity water flooding and can provide more guidance for conventional and unconventional oilfield application of low-salinity water flooding technology.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Changbin Yan ◽  
Xiao Xu ◽  
Lei Huang

Despite reports on previous research associated with the dynamic strength of mudded intercalations during cyclic loading, a systematic investigation of the impact factors of this strength is still valuable. This work aimed at experimentally revealing the impact factors of the strength along with their impacts. The potential impact factors considered in this work include (i) water content, (ii) clay mineral composition, (iii) clay content, (iv) confining pressure, and (v) cyclic failure time. Specimens of mudded intercalations were collected from China and were remolded and prepared for a dynamic triaxial test under cyclic loads. The test results showed that the dynamic strength is impacted by water content (strongly), clay mineral composition (moderately), confining pressure (moderately), and cyclic failure time (weakly); no significant impact of clay content was detected. Moreover, the dynamic cohesion is correlated with clay mineral composition (strongly), water content (moderately), and cyclic failure time (weakly); no significant correlation with clay content or confining pressure was detected. Finally, the dynamic friction angle is correlated with water content (strongly), clay content (moderately), and cyclic failure time (weakly); no significant correlation with clay mineral composition or confining pressure was detected.


2017 ◽  
Vol 64 (2) ◽  
pp. 265-271 ◽  
Author(s):  
Katashi Kubo ◽  
Takashi Hirayama ◽  
Shigeto Fujimura ◽  
Tetsuya Eguchi ◽  
Naoto Nihei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document