scholarly journals Causality in Schwinger’s Picture of Quantum Mechanics

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 75
Author(s):  
Florio M. Ciaglia ◽  
Fabio Di Di Cosmo ◽  
Alberto Ibort ◽  
Giuseppe Marmo ◽  
Luca Schiavone ◽  
...  

This paper begins the study of the relation between causality and quantum mechanics, taking advantage of the groupoidal description of quantum mechanical systems inspired by Schwinger’s picture of quantum mechanics. After identifying causal structures on groupoids with a particular class of subcategories, called causal categories accordingly, it will be shown that causal structures can be recovered from a particular class of non-selfadjoint class of algebras, known as triangular operator algebras, contained in the von Neumann algebra of the groupoid of the quantum system. As a consequence of this, Sorkin’s incidence theorem will be proved and some illustrative examples will be discussed.

1989 ◽  
Vol 31 (1) ◽  
pp. 31-47
Author(s):  
Baruch Solel

Let M be a σ-finite von Neumann algebra and α = {αt}t∈A be a representation of a compact abelian group A as *-automorphisms of M. Let Γ be the dual group of A and suppose that Γ is totally ordered with a positive semigroup Σ⊆Γ. The analytic algebra associated with α and Σ iswhere spα(a) is Arveson's spectrum. These algebras were studied (also for A not necessarily compact) by several authors starting with Loebl and Muhly [10].


1977 ◽  
Vol 81 (2) ◽  
pp. 237-243 ◽  
Author(s):  
J. Moffat

In section 3 we shall prove the following results: Let G be a separable locally compact abelian group, R a von Neumann algebra acting on a separable Hilbert space, and α a weakly continuous representation of G by inner *-automorphisms of R, say α(g) = ad Wg with Wg ∈ U(R). Then there is a weakly continuous unitary representation of G, by unitaries in R, implementing α if and only if the Wg's commute with each other. The result was motivated by the proof of (7), theorem 1. Suppose now Gis a discrete amenable group of *-automorphisms of a countably decomposable von Neumann algebra R. In section 3 we give a necessary and sufficient condition for the existence of a faithful normal G-invariant state on R. This generalizes a result of Hajian and Kakutani on invariant measures (2).


2020 ◽  
Vol 17 (supp01) ◽  
pp. 2040007
Author(s):  
Gerard ’t Hooft

A sharper formulation is presented for an interpretation of quantum mechanics advocated by the author. We claim that only those quantum theories should be considered for which an ontological basis can be constructed. In terms of this basis, the entire theory can be considered as being deterministic. An example is illustrated: massless, noninteracting fermions are ontological. Subsequently, as an essential element of the deterministic interpretation, we put forward conservation laws concerning the ontological nature of a variable, and the uncertainties concerning the realization of states. Quantum mechanics can then be treated as a device that combines statistics with mechanical, deterministic laws, such that uncertainties are passed on from initial states to final states.


1983 ◽  
Vol 35 (4) ◽  
pp. 710-723
Author(s):  
C. Robert Miers ◽  
John Phillips

Let A be a C*-algebra, let p be a polynomial over C, and let a in M(A) (the multiplier algebra of A) be such that p(ad a) = 0. In this paper we study the following problem: when does there exist λ in Z(M(A)) (the centre of M(A)) such that p(a – λ) = 0? The first result of this type known to us is due to I. N. Herstein [7], who showed that for a simple ring with identity, such a λ always exists when p is of the form p(x) = xk for some positive integer k. Later, in [8], C. R. Miers showed that the result is true for any primitive unital C*-algebra and any polynomial whatever. It was also shown in [8] that if A is a unital C*-algebra acting on H and p is any polynomial, then such a λ exists in the larger algebra Z(A″). In particular, the strict result holds for any von Neumann algebra, A.


2005 ◽  
Vol 79 (2) ◽  
pp. 231-241 ◽  
Author(s):  
Paul Jolissaint

AbstractLet F′ be the commutator subgroup of F and let Γ0 be the cyclic group generated by the first generator of F. We continue the study of the central sequences of the factor L(F′), and we prove that the abelian von Neumann algebra L(Γ0) is a strongly singular MASA in L(F). We also prove that the natural action of F on [0, 1] is ergodic and that its ratio set is {0} ∪ {2k; k ∞ Z}.


2007 ◽  
Vol 72 (2) ◽  
pp. 625-648 ◽  
Author(s):  
Masanao Ozawa

AbstractIn 1981, Takeuti introduced quantum set theory as the quantum counterpart of Boolean valued models of set theory by constructing a model of set theory based on quantum logic represented by the lattice of closed subspaces in a Hilbert space and showed that appropriate quantum counterparts of ZFC axioms hold in the model. Here, Takeuti's formulation is extended to construct a model of set theory based on the logic represented by the lattice of projections in an arbitrary von Neumann algebra. A transfer principle is established that enables us to transfer theorems of ZFC to their quantum counterparts holding in the model. The set of real numbers in the model is shown to be in one-to-one correspondence with the set of self-adjoint operators affiliated with the von Neumann algebra generated by the logic. Despite the difficulty pointed out by Takeuti that equality axioms do not generally hold in quantum set theory, it is shown that equality axioms hold for any real numbers in the model. It is also shown that any observational proposition in quantum mechanics can be represented by a corresponding statement for real numbers in the model with the truth value consistent with the standard formulation of quantum mechanics, and that the equality relation between two real numbers in the model is equivalent with the notion of perfect correlation between corresponding observables (self-adjoint operators) in quantum mechanics. The paper is concluded with some remarks on the relevance to quantum set theory of the choice of the implication connective in quantum logic.


2012 ◽  
Vol 27 (19) ◽  
pp. 1250102 ◽  
Author(s):  
TOSHIAKI TANAKA

We formulate [Formula: see text]-fold supersymmetry in quantum mechanical systems with reflection operators. As in the cases of other systems, they possess the two significant characters of [Formula: see text]-fold supersymmetry, namely, almost isospectrality and weak quasi-solvability. We construct explicitly the most general one- and two-fold supersymmetric quantum mechanical systems with reflections. In the case of [Formula: see text], we find that there are seven inequivalent such systems, three of which are characterized by three arbitrary functions having definite parity while the other four characterized by two arbitrary functions. In addition, four of the seven inequivalent systems do not reduce to ordinary quantum systems without reflections. Furthermore, in certain particular cases, they are essentially equivalent to the most general two-by-two Hermitian matrix two-fold supersymmetric quantum systems obtained previously by us.


1990 ◽  
Vol 04 (05) ◽  
pp. 1069-1118 ◽  
Author(s):  
David E. EVANS

We survey the recent work in non-commutative operator algebras (especially AF-algebras, those which are inductive limits of finite dimensional C*-algebras) and which arise in studying critical phenomena in classical statistical mechanics and conformal field theory, from a C*- or topological viewpoint, rather than a von Neumann algebra/measure theoretic one.


2019 ◽  
Vol 30 (14) ◽  
pp. 1950074
Author(s):  
Keisuke Yoshida

We study some relations between self-similar group actions and operator algebras. We see that [Formula: see text] or [Formula: see text], where [Formula: see text] denotes the Bernoulli measure and [Formula: see text] the set of [Formula: see text]-generic points. In the case [Formula: see text], we get a unique KMS state for the canonical gauge action on the Cuntz–Pimsner algebra constructed from a self-similar group action by Nekrashevych. Moreover, if [Formula: see text], there exists a unique tracial state on the gauge invariant subalgebra of the Cuntz–Pimsner algebra. We also consider the GNS representation of the unique KMS state and compute the type of the associated von Neumann algebra.


2013 ◽  
Vol 28 (15) ◽  
pp. 1350065 ◽  
Author(s):  
A. E. BERNARDINI

The framework of the generalized theory of quantum measurement provides some theoretical tools for computing flavor associated energies correlated to the von-Neumann entropy of a composed system. After defining flavor-averaged and flavor-weighted energies, that are respectively supported by nonselective (selective) quantum measurement schemes, the right correlation between the energies of flavor eigenstates and their measurement probabilities can be obtained. Our results from the composed quantum system framework show that the nonselective measurement scheme for computing flavor-weighted energies is consistent with predictions from single-particle quantum mechanics. As an application of our results, through the expressions for neutrino effective mass values, it is straightforwardly verified that cosmological background neutrino energy densities could be obtained from the coherent superposition of mass eigenstates.


Sign in / Sign up

Export Citation Format

Share Document