sod assay
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
pp. 1-17
Author(s):  
Lourds M. Fernando ◽  
Silwat Adeel ◽  
Mohammed Abul Basar ◽  
Anna K Allen ◽  
Atanu Duttaroy
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mandana Lotfi ◽  
Sohrab Kazemi ◽  
Anahita Ebrahimpour ◽  
Fatemeh Shirafkan ◽  
Marzieh Pirzadeh ◽  
...  

The target of this study was to evaluate the efficacy, histopathological, oxidative stress, and molecular effects of quercetin (QRC) in mice with oral mucositis induced by 5-fluorouracil (5-FU). Thirty-six albino male mice with oral mucositis induced by 5-FU as a chemotherapeutic agent were used in this study. The animals were randomly divided into 6 groups: control group, mucositis (MUC) group, pretreatment group, posttreatment group, and two last groups including nanoemulsion form of QRC with a dose of 5 mg/kg in both pretreatment and posttreatment. In the present evaluation, fewer oral lesions were observed in the QRC posttreatment groups compared to the pretreatment and nanoemulsion receiving groups. In the SOD assay, the most significant difference was observed in the posttreatment nanogroup (41.073 ± 1.24) and pretreatment nanogroup (43.453 ± 2.60) in comparison to the 5-FU group (30.897 ± 1.93). The results of CAT assay also showed a significant difference in nano-posttreatment (124.60 ± 10.85), posttreatment (135.4 ± 9.82), and nano-pretreatment groups (128.80 ± 7.20) compared to the 5-FU group (55.07 ± 8.91). The expression of inflammatory genes such as Hif-1α and NfκB in this group was lower than in the other groups, although this difference was not significant. It seems that the use of QRC can improve the treatment process of oral mucositis induced by 5-FU.


2020 ◽  
pp. 194589242098241
Author(s):  
Hai Lin ◽  
Guangyi Ba ◽  
Ru Tang ◽  
Mingxian Li ◽  
Zhipeng Li ◽  
...  

Background Oxidative stress plays crucial roles in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). Thioredoxin-interacting protein (TXNIP) is essential in the process of triggering oxidative stress. However, its role and mechanism in CRSwNP remain unclear. The present study sought to explore the role and mechanism of TXNIP in the pathogenesis of CRSwNP. Methods Western blotting, real-time PCR and immunohistochemistry (IHC) were employed to assess TXNIP, thioredoxin (TRX) expression in nasal tissue samples from patients with CRSwNP and control subjects. MDA level and SOD activity in nasal tissue homogenates were measured using MDA and SOD Assay Kit. To evaluate the role and mechanism of TXNIP in CRSwNP, human nasal epithelial cells (HNECs) were cultured and stimulated using TXNIP siRNA, with or without N-acetylcysteine (NAC, an ROS scavenger). Western blotting, real-time PCR, ROS detecting dye DCFH-DA, MDA and SOD Assay Kit were performed to assess the effects and mechanisms of stimulators on the cells. Results We found significantly increased levels of TXNIP and decreased levels of TRX protein, mRNA, positive cells, increased MDA level and decreased SOD activity in CRSwNP patients compared with control subjects. In vitro study, significantly altered levels of TXNIP, TRX, MDA, SOD and ROS in HNECs were found following treatment of TXNIP siRNA with or without NAC on HNECs. Conclusion TXNIP expression was increased and TRX expression was decreased in CRSwNP at both protein and mRNA levels. MDA levels were increased and SOD activities were decreased in CRSwNP. TXNIP may have negative association with TRX, and then decrease SOD activities and increase MDA levels, resulting in the upregulation of ROS and oxidative stress in HNECs, which may play a pivotal role in the pathogenesis of CRSwNP. Future studies are expected to further explore the role and mechanism of TXNIP in CRSwNP.


2011 ◽  
Vol 287-290 ◽  
pp. 32-36 ◽  
Author(s):  
Lu Yan ◽  
Shu Zhang ◽  
Chao Zeng ◽  
Yu Hua Xue ◽  
Zhong Lou Zhou ◽  
...  

In this paper, we report the first study on cytotoxicity of single-walled carbon nanotubes (SWCNTs) and theirs derivatives with human ocular cells, such as ARPE-19 cells. In particular, we have systematically investigated the cytotoxicity of SWCNTs, hydroxyl-functionalized SWCNTs (SWCNT-OH), and carboxylic functionalized SWCNTs (SWCNT-COOH) with ARPE-19 cells by examining their influence on the cell morphology, viability, oxidative stress, membrane integrity and apoptosis. To this end, various methods, including optical micrography, CCK-8 assay, LDH assay, SOD assay, TEM and Apoptosis assay, have been used in this study. Our results suggest that SWCNTs could cause an decrease in the cell survival rate, changes in the SOD level, membrane integrity and cell apoptosis, indicating a high toxicity to ARPE-19 cells. However, chemical functionalization of SWCNTs with –OH and –COOH groups was found to significantly improve the biocompatibility of SWCNTs. Among the SWCNTs and their derivatives studied in this work, the SWCNT-COOH exhibits the best biocompatibility to ARPE-19 cells.


Sign in / Sign up

Export Citation Format

Share Document