dielectric spectrum
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 15)

H-INDEX

18
(FIVE YEARS 2)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 311
Author(s):  
Yudong Wang ◽  
Jinhua Yuan ◽  
Xiaopeng Zhao ◽  
Jianbo Yin

Due to their unique anisotropic morphology and properties, graphene-based materials have received extensive attention in the field of smart materials. Recent studies show that graphene-based materials have potential application as a dispersed phase to develop high-performance electrorheological (ER) fluids, a kind of smart suspension whose viscosity and viscoelastic properties can be adjusted by external electric fields. However, pure graphene is not suitable for use as the dispersed phase of ER fluids due to the electric short circuit caused by its high electrical conductivity under electric fields. However, graphene oxide (GO) and graphene-based composites are suitable for use as the dispersed phase of ER fluids and show significantly enhanced property. In this review, we look critically at the latest developments of ER fluids based on GO and graphene-based composites, including their preparation, electrically tunable ER property, and dispersed stability. The mechanism behind enhanced ER property is discussed according to dielectric spectrum analysis. Finally, we also propose the remaining challenges and possible developments for the future outlook in this field.


2021 ◽  
pp. 861-870
Author(s):  
Ahmad A. Hasan

PVC-LiF composites films with different lithium fluoride (LiF) concentrations (0, 30, 50, and 70 weight %) were prepared by using the casting method. This research deals with the investigation of dielectric properties for PVC-LiF composite films as a function of frequency and temperature in the ranges of 100 to 107 Hz and 293 - 370 K, respectively. The A.C activation energy values estimated from Arrhenius equation were 0.03820, 0.3174, 0.2009, and 0.1845 eV for the different PVC-LiF films with different LiF concentrations, respectively.  It was found that the activation energy decreases by increasing LiF concentration and frequency. The exponent (s) showed a progressive increase with LiF for PVC-LiF films, while it showed a non-systematic sequence with the increase of temperature. The dependence of the dielectric constant (εr) and dielectric loss (εi) on temperature and frequency was investigated for PVC-LiF films with the different LiF concentrations. The dielectric spectrum showed a strong dispersion when LiF was added to the polymer matrix (PVC) in the whole range of frequency and temperature. The results were interpreted in terms of structural differences caused by the effect of thermal treatment.


2020 ◽  
Vol 54 (3) ◽  
pp. 035303
Author(s):  
Michal Rajnak ◽  
Bystrik Dolnik ◽  
Jakub Krempasky ◽  
Roman Cimbala ◽  
Kinnari Parekh ◽  
...  
Keyword(s):  

Author(s):  
Arkadiusz Lewandowski ◽  
Agnieszka Szyplowska ◽  
Marcin Kafarski ◽  
Andrzej Wilczek ◽  
Justyna Szerement ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document