ladderane lipids
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 0)

2022 ◽  
Vol 19 (1) ◽  
pp. 201-221
Author(s):  
Zoë R. van Kemenade ◽  
Laura Villanueva ◽  
Ellen C. Hopmans ◽  
Peter Kraal ◽  
Harry J. Witte ◽  
...  

Abstract. Interpreting lipid biomarkers in the sediment archive requires a good understanding of their application and limitations in modern systems. Recently it was discovered that marine bacteria performing anaerobic ammonium oxidation (anammox), belonging to the genus Ca. Scalindua, uniquely synthesize a stereoisomer of bacteriohopanetetrol (“BHT-x”). The ratio of BHT-x over total bacteriohopanetetrol (BHT, ubiquitously synthesized by diverse bacteria) has been suggested as a proxy for water column anoxia. As BHT has been found in sediments over 50 Myr old, BHT-x has the potential to complement and extend the sedimentary biomarker record of marine anammox, conventionally constructed using ladderane lipids. Yet, little is known about the distribution of BHT-x in relation to the distribution of ladderanes and to the genetic evidence of Ca. Scalindua in modern marine systems. Here, we investigate the distribution of BHT-x and the application of the BHT-x ratio in relation to distributions of ladderane intact polar lipids (IPLs), ladderane fatty acids (FAs) and Ca. Scalindua 16S rRNA genes in suspended particulate matter (SPM) from the water column of the Benguela upwelling system (BUS), sampled across a large oxygen gradient. In BUS SPM, high BHT-x abundances were restricted to the oxygen-deficient zone on the continental shelf (at [O2] < 45 µmol L−1, in all but one case). High BHT-x abundances co-occurred with high abundances of the Ca. Scalindua 16S rRNA gene (relative to the total number of bacterial 16S rRNA genes) and ladderane IPLs. At shelf stations with [O2] > 50 µmol L−1, the BHT-x ratio was < 0.04 (in all but one case). In apparent contradiction, ladderane FAs and low abundances of BHT and BHT-x (resulting in BHT-x ratios > 0.04) were also detected in oxygenated offshore waters ([O2] up to 180 µmol L−1), whereas ladderane IPLs were undetected. The index of ladderane lipids with five cyclobutane rings (NL5) correlates with in situ temperature. NL5-derived temperatures suggested that ladderane FAs in the offshore waters were not synthesized in situ but were transported down-slope from warmer shelf waters. Thus, in sedimentary archives of systems with known lateral organic matter transport, such as the BUS, relative BHT and BHT-x abundances should be carefully considered. In such systems, a higher BHT-x ratio may act as a safer threshold for deoxygenation and/or Ca. Scalindua presence: our results and previous studies indicate that a BHT-x ratio of ≥ 0.2 is a robust threshold for oxygen-depleted waters ([O2] < 50 µmol kg−1). In our data, ratios of ≥ 0.2 coincided with Ca. Scalindua 16S rRNA genes in all samples (n=62), except one. Lastly, when investigating in situ anammox, we highlight the importance of using ladderane IPLs over BHT-x and/or ladderane FAs; these latter compounds are more recalcitrant and may derive from transported fossil anammox bacteria remnants.


2021 ◽  
Author(s):  
Zoë Rebecca van Kemenade ◽  
Laura Villanueva ◽  
Ellen C. Hopmans ◽  
Peter Kraal ◽  
Harry J. Witte ◽  
...  

Abstract. Interpreting lipid biomarkers in the sediment archive requires a good understanding of their application and limitations in modern systems. Recently it was discovered that marine bacteria performing anaerobic ammonium oxidation (anammox), belonging to the genus Ca. Scalindua, uniquely synthesize a stereoisomer of bacteriohopanetetrol (‘BHT-x’). The ratio of BHT-x over total bacteriohopanetetrol (BHT; ubiquitously synthesized by diverse bacteria) has been suggested as a proxy for water column anoxia. As BHT has been found in sediments over 50 Myr old, BHT-x has the potential to complement and extend the sedimentary biomarker record of marine anammox, conventionally constructed using ladderane lipids. Yet, little is known about the distribution of BHT-x in relation to the distribution of ladderanes and to the genetic evidence of Ca. Scalindua in modern marine systems. Here, we investigate the distribution of BHT-x and the application of the BHT-x ratio in relation to distributions of intact polar (IPL) ladderane lipids, ladderane fatty acids (FAs) and Ca. Scalindua 16S rRNA genes in suspended particulate matter (SPM) from the water column, sampled across a large oxygen gradient in the Benguela upwelling system (BUS). In BUS SPM, high BHT-x abundances were constrained to the oxygen deficient zone on the continental shelf (at [O2] < 45 µmol L−1, in all but one case). High BHT-x abundances co-occurred with high abundances of the Ca. Scalindua 16S rRNA gene (relative to the total number of bacterial 16S rRNA genes) and ladderane IPLs. At shelf stations with [O2] > 50 µmol L−1, the BHT-x ratio was < 0.04 (in all but one case). In apparent contradiction, ladderane FAs and low abundances of BHT and BHT-x (resulting in BHT-x ratio’s > 0.04) were also detected in oxygenated offshore waters ([O2] up to 180 µmol L−1), whereas ladderane IPLs were undetected. NL5-derived temperatures suggested that ladderane FAs in the offshore waters were not synthesized in situ but derived from warmer shelf waters. Thus, in sedimentary archives of systems with known lateral organic matter transport, such as the BUS, relative BHT and BHT-x abundances should be carefully considered. In such systems, a higher BHT-x ratio may act as a safer threshold for deoxygenation and/or Ca. Scalindua presence: in the BUS, at [O2] > 50 µmol L−1, the BHT-x ratio was < 0.18 at both off -and onshore sites (in all but one case) and a ratio > 0.18 corresponded in all cases (except one) with the presence of Ca. Scalindua 16S rRNA genes. Lastly, when investigating in situ anammox, we highlight the importance of using ladderane IPLs over BHT-x and/or ladderane FAs; these latter compounds are more recalcitrant and may derive from transported fossil anammox bacteria remnants.


2021 ◽  
Author(s):  
V. Kouba ◽  
D. Vejmelkova ◽  
E. Zwolsman ◽  
K. Hurkova ◽  
K. Navratilova ◽  
...  

AbstractAnammox bacteria enable an efficient removal of nitrogen from sewage in processes involving partial nitritation and anammox (PN/A) or nitrification, partial denitrification, and anammox (N-PdN/A). In mild climates, anammox bacteria must be adapted to ≤15 °C, typically by gradual temperature decrease; however, this takes months or years. To reduce the time necessary for the adaptation, an unconventional method of ‘cold shocks’ is promising, involving hours-long exposure of anammox biomass to extremely low temperatures. We compared the efficacies of gradual temperature decrease and cold shocks to increase the metabolic activity of anammox (fed batch reactor, planktonic “Ca. Kuenenia”). We assessed the cold shock mechanism on the level of protein expression (quantitative shot-gun proteomics, LC-HRMS/MS) and structure of membrane lipids (UPLC-HRMS/MS). The shocked culture was more active (0.66±0.06 vs 0.48±0.06 kg-N/kg-VSS/d) and maintained the relative content of N-respiration proteins at levels consistent levels with the initial state, whereas the content of these proteins decreased in gradually acclimated culture. Cold shocks also induced a more efficient up-regulation of cold shock proteins (e.g. CspB, TypA, ppiD). Ladderane lipids characteristic for anammox evolved to a similar end-point in both cultures which confirms their role in anammox bacteria adaptation to cold and indicates a three-pronged adaptation mechanism involving ladderane lipids (ladderane alkyl length, introduction of shorter non-ladderane alkyls, polar headgroup). Overall, we show the outstanding potential of cold shocks for low-temperature adaptation of anammox bacteria and provide yet unreported detailed mechanisms of anammox adaptation to low temperatures.HighlightsAnammox bacteria were adapted to low T by gradual acclimation and cold shocksThe shocked culture was more active (0.66±0.06 vs 0.48±0.06 kg-N/kg-VSS/d)N-respiration proteins content decreased in gradually acclimated bacteriaSeveral cold shock proteins were upregulated more efficiently by cold shocksAt ↓T, anammox adjusted ladderane membrane lipid composition in three aspectsGraphical abstract


2018 ◽  
Vol 115 (37) ◽  
pp. 9098-9103 ◽  
Author(s):  
Frank R. Moss ◽  
Steven R. Shuken ◽  
Jaron A. M. Mercer ◽  
Carolyn M. Cohen ◽  
Thomas M. Weiss ◽  
...  

Ladderane lipids are unique to anaerobic ammonium-oxidizing (anammox) bacteria and are enriched in the membrane of the anammoxosome, an organelle thought to compartmentalize the anammox process, which involves the toxic intermediate hydrazine (N2H4). Due to the slow growth rate of anammox bacteria and difficulty of isolating pure ladderane lipids, experimental evidence of the biological function of ladderanes is lacking. We have synthesized two natural and one unnatural ladderane phosphatidylcholine lipids and compared their thermotropic properties in self-assembled bilayers to distinguish between [3]- and [5]-ladderane function. We developed a hydrazine transmembrane diffusion assay using a water-soluble derivative of a hydrazine sensor and determined that ladderane membranes are as permeable to hydrazine as straight-chain lipid bilayers. However, pH equilibration across ladderane membranes occurs 5–10 times more slowly than across straight-chain lipid membranes. Langmuir monolayer analysis and the rates of fluorescence recovery after photobleaching suggest that dense ladderane packing may preclude formation of proton/hydroxide-conducting water wires. These data support the hypothesis that ladderanes prevent the breakdown of the proton motive force rather than blocking hydrazine transmembrane diffusion in anammox bacteria.


2014 ◽  
Vol 181 ◽  
pp. 76-82 ◽  
Author(s):  
Vitaly V. Chaban ◽  
Morten B. Nielsen ◽  
Wojciech Kopec ◽  
Himanshu Khandelia

2010 ◽  
Vol 76 (5) ◽  
pp. 1596-1603 ◽  
Author(s):  
Jayne E. Rattray ◽  
Jack van de Vossenberg ◽  
Andrea Jaeschke ◽  
Ellen C. Hopmans ◽  
Stuart G. Wakeham ◽  
...  

ABSTRACT Anaerobic ammonium-oxidizing (anammox) bacteria have the unique ability to synthesize fatty acids containing linearly concatenated cyclobutane rings, termed “ladderane lipids.” In this study we investigated the effect of temperature on the ladderane lipid composition and distribution in anammox enrichment cultures, marine particulate organic matter, and surface sediments. Under controlled laboratory conditions we observed an increase in the amount of C20 [5]-ladderane fatty acids compared with the amount of C18 [5]-ladderane fatty acids with increasing temperature and also an increase in the amount of C18 [5]-ladderane fatty acids compared with the amount of C20 [5]-ladderane fatty acids with decreasing temperature. Combining these data with results from the natural environment showed a significant (R 2 = 0.85, P = <0.0001, n = 121) positive sigmoidal relationship between the amounts of C18 and C20 [5]-ladderane fatty acids and the in situ temperature; i.e., there is an increase in the relative abundance of C18 [5]-ladderane fatty acids at lower temperatures and vice versa, particularly at temperatures between 12�C and 20�C. Novel shorter (C16) and longer (C22 to C24) ladderane fatty acids were also identified, but their relative amounts were small and did not change with temperature. The adaptation of ladderane fatty acid chain length to temperature changes is similar to the regulation of common fatty acid composition in other bacteria and may be the result of maintaining constant membrane fluidity under different temperature regimens (homeoviscous adaptation). Our results can potentially be used to discriminate between the origins of ladderane lipids in marine sediments, i.e., to determine if ladderanes are produced in situ in relatively cold surface sediments or if they are fossil remnants originating from the warmer upper water column.


2009 ◽  
Vol 292 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Jayne E. Rattray ◽  
Jan A.J. Geenevasen ◽  
Laura van Niftrik ◽  
W. Irene C. Rijpstra ◽  
Ellen C. Hopmans ◽  
...  

2008 ◽  
Vol 39 (12) ◽  
pp. 1735-1741 ◽  
Author(s):  
Andrea Jaeschke ◽  
Michael D. Lewan ◽  
Ellen C. Hopmans ◽  
Stefan Schouten ◽  
Jaap S. Sinninghe Damsté

Sign in / Sign up

Export Citation Format

Share Document