scholarly journals Impact of Temperature on Ladderane Lipid Distribution in Anammox Bacteria

2010 ◽  
Vol 76 (5) ◽  
pp. 1596-1603 ◽  
Author(s):  
Jayne E. Rattray ◽  
Jack van de Vossenberg ◽  
Andrea Jaeschke ◽  
Ellen C. Hopmans ◽  
Stuart G. Wakeham ◽  
...  

ABSTRACT Anaerobic ammonium-oxidizing (anammox) bacteria have the unique ability to synthesize fatty acids containing linearly concatenated cyclobutane rings, termed “ladderane lipids.” In this study we investigated the effect of temperature on the ladderane lipid composition and distribution in anammox enrichment cultures, marine particulate organic matter, and surface sediments. Under controlled laboratory conditions we observed an increase in the amount of C20 [5]-ladderane fatty acids compared with the amount of C18 [5]-ladderane fatty acids with increasing temperature and also an increase in the amount of C18 [5]-ladderane fatty acids compared with the amount of C20 [5]-ladderane fatty acids with decreasing temperature. Combining these data with results from the natural environment showed a significant (R 2 = 0.85, P = <0.0001, n = 121) positive sigmoidal relationship between the amounts of C18 and C20 [5]-ladderane fatty acids and the in situ temperature; i.e., there is an increase in the relative abundance of C18 [5]-ladderane fatty acids at lower temperatures and vice versa, particularly at temperatures between 12�C and 20�C. Novel shorter (C16) and longer (C22 to C24) ladderane fatty acids were also identified, but their relative amounts were small and did not change with temperature. The adaptation of ladderane fatty acid chain length to temperature changes is similar to the regulation of common fatty acid composition in other bacteria and may be the result of maintaining constant membrane fluidity under different temperature regimens (homeoviscous adaptation). Our results can potentially be used to discriminate between the origins of ladderane lipids in marine sediments, i.e., to determine if ladderanes are produced in situ in relatively cold surface sediments or if they are fossil remnants originating from the warmer upper water column.

1984 ◽  
Vol 246 (4) ◽  
pp. R460-R470 ◽  
Author(s):  
J. R. Hazel

The metabolic adjustments responsible for the “homeoviscous adaptation” of membrane lipid composition in fish are examined with special reference to the rainbow trout, Salmo gairdneri. The percentage of fatty acid lipogenesis attributable to unsaturates was elevated after an acute drop in temperature but declined with continued cold exposure (i.e., cold acclimation). In contrast, selected desaturation reactions [particularly those involved in the production of polyunsaturated fatty acids (PUFA) of the n-3 and/or n-6 families] proceeded more rapidly in cold-than in warm-acclimated trout. Different time courses for the change in monoene and PUFA levels of hepatic microsomal membranes during thermal acclimation suggest that the various desaturase enzymes contribute to the acclimatory response at different times. Certain fatty acids, particularly the delta 5-desaturation products of the n-3 (20:5 delta 5,8,11,14,17) and n-6 (20:4 delta 5,8,11,14) series, were preferentially incorporated into phospholipids at cold temperatures and by cold-acclimated trout, due in part to the direct effect of temperature on the substrate preferences of the phospho- and acyltransferase enzymes of de novo phospholipid biosynthesis; however, chain length rather than degree of unsaturation per se may determine the temperature-dependent pattern of fatty acid incorporation. Both acute and chronic cold exposure elevated the incorporation of PUFA into phosphatidylserine (PS), suggesting that the conversion of PS to phosphatidylethanolamine (PE) may be activated at cold temperatures. The rate of homeoviscous adaptation appears to be limited by the rate of membrane lipid turnover, which although generally positively correlated with acclimation temperature, did vary depending on the phospholipid moiety and tissue considered. Finally the direct acylation of lysophospholipids formed during the process of membrane turnover may contribute to both rapid and acclimatory adjustments in membrane lipid composition.


2014 ◽  
Vol 11 (14) ◽  
pp. 3729-3738 ◽  
Author(s):  
K. E. Larkin ◽  
A. J. Gooday ◽  
C. Woulds ◽  
R. M. Jeffreys ◽  
M. Schwartz ◽  
...  

Abstract. Foraminifera are an important component of benthic communities in oxygen-depleted settings, where they potentially play a significant role in the processing of organic matter. We tracked the uptake of a 13C-labelled algal food source into individual fatty acids in the benthic foraminiferal species Uvigerina ex. gr. semiornata from the Arabian Sea oxygen minimum zone (OMZ). The tracer experiments were conducted on the Pakistan margin during the late/post monsoon period (August–October 2003). A monoculture of the diatom Thalassiosira weisflogii was 13C-labelled and used to simulate a pulse of phytoplankton in two complementary experiments. A lander system was used for in situ incubations at 140 m water depth and for 2.5 days in duration. Shipboard laboratory incubations of cores collected at 140 m incorporated an oxystat system to maintain ambient dissolved oxygen concentrations and were terminated after 5 days. Uptake of diatoms was rapid, with a high incorporation of diatom fatty acids into foraminifera after ~ 2 days in both experiments. Ingestion of the diatom food source was indicated by the increase over time in the quantity of diatom biomarker fatty acids in the foraminifera and by the high percentage of 13C in many of the fatty acids present at the endpoint of both in situ and laboratory-based experiments. These results indicate that


1991 ◽  
Vol 260 (2) ◽  
pp. L44-L51 ◽  
Author(s):  
K. J. Longmuir ◽  
S. Haynes

This study was undertaken to determine those structural features of phospholipid molecules which influence their enrichment in type II cell lamellar body material. Cultured fetal rabbit lung tissue was labeled with [1-14C]acetate, type II cells were isolated, and extracellular lamellar body and microsomal fractions were prepared. Radiolabeled molecular species of phosphatidylcholine (PC) and phosphatidylethanolamine were analyzed by high-performance liquid chromatography (HPLC), followed by silver nitrate thin-layer chromatography of HPLC peak fractions that overlapped. Compared with microsomes, lamellar body PC was selectively enriched with molecular species containing 14- and 16-carbon fatty acids and depleted of species containing 18-carbon fatty acids. Palmitoleic acid and an ether linkage positively influenced the enrichment of PC molecular species in the lamellar body material, but these structural features were secondary to the predominant influence of fatty acid chain length. In vivo, lung tissue normally contains low levels of palmitoleic acid; hence most unsaturated fatty acids are 18-carbons or longer. A cellular lipid-sorting mechanism that selects PCs by recognition of 14- and 16-carbon fatty acid chains (and not by recognition of fatty acid saturation) should serve to enrich the resulting pulmonary surfactant with disaturated molecular species of PC.


mBio ◽  
2013 ◽  
Vol 4 (3) ◽  
Author(s):  
Aaron C. Pride ◽  
Carmen M. Herrera ◽  
Ziqiang Guan ◽  
David K. Giles ◽  
M. Stephen Trent

ABSTRACTPrevious work from our laboratory showed that the Gram-negative aquatic pathogenVibrio choleraecan take up a much wider repertoire of fatty acids than other Gram-negative organisms. The current work elaborated on the ability ofV. choleraeto exploit an even more diverse pool of lipid nutrients from its environment. We have demonstrated that the bacterium can use lysophosphatidylcholine as a metabolite for growth. Using a combination of thin-layer chromatography and mass spectrometry, we also showed that lysophosphatidylcholine-derived fatty acid moieties can be used for remodeling theV. choleraemembrane architecture. Furthermore, we have identified a lysophospholipase, VolA (Vibrioouter membrane lysophospholipase A), required for these activities. The enzyme is well conserved inVibriospecies, is coexpressed with the outer membrane fatty acid transporter FadL, is one of very few surface-exposed lipoprotein enzymes to be identified in Gram-negative bacteria and the first instance of a surface lipoprotein phospholipase. We propose a model whereby the bacterium efficiently couples the liberation of fatty acid from lysophosphatidylcholine to its subsequent metabolic uptake. An expanded ability to scavenge diverse environmental lipids at the bacterial surface increases overall bacterial fitness and promotes homeoviscous adaptation through membrane remodeling.IMPORTANCEOur understanding of how bacteria utilize environmental lipid sources has been limited to lipids such as fatty acids and cholesterol. This narrow scope may be attributed to both the intricate nature of lipid uptake mechanisms and the diversity of lipid substrates encountered within an ecological niche. By examining the ability of the pathogenVibrio choleraeto utilize exogenous lipids, we uncovered a surface-exposed lipoprotein (VolA) that is required for processing the prevalent host lipid lysophosphatidylcholine. VolA functions as a lipase liberating a fatty acid from exogenous lysophospholipids. The freed fatty acid is then transported into the cell, serving as a carbon source, or shunted into phospholipid synthesis for membrane assembly. A limited number of surface-exposed lipoproteins have been found in Gram-negative organisms, and few have enzymatic function. This work highlights the ability of bacteria to exploit exogenous lipids for both maintenance of the membrane and carbon source acquisition.


2001 ◽  
Vol 47 (5) ◽  
pp. 382-391 ◽  
Author(s):  
Hongjun He ◽  
Roger Gordon ◽  
John A Gow

In the first part of this study, generation times relative to temperature, together with cardinal and conceptual temperatures, were determined for four strains of Xenorhabdus bacteria that represented three geographically distinct species. The data showed that the NF strain of Xenorhabdus bovienii, like the Umeå strain of the same species, is psychrotrophic, while Xenorhabdus sp. TX strain resembles Xenorhabdus nematophila All strain in being mesophilic. In the second part, the capacity of these bacteria to adapt to changes in temperature, shown by changes in fatty acid composition, was investigated. As temperature declined, the proportions of the two major unsaturated fatty acids, palmitoleic (16:1ω7) acid and oleic (18:1ω9) acid, increased significantly in all of the strains. The proportion of the prevalent saturated fatty acid, which was palmitic acid (16:0), decreased. In the All, NF, and Umeå strains, myristic acid (14:0), margaric acid (17:0), cyclopropane (17:0c), and arachidic acid (20:0) decreased with decreasing temperature. In the third part of the study, the synthesis of isozymes in response to changing temperature was investigated. For the seven enzymes studied, the numbers for which isozyme synthesis was temperature related were as follows: five for Umeå, four for All, three for NF, and two for TX. Where the study dealt with fatty acid composition and isozyme synthesis, the results show a broad capacity for physiological temperature adaptation among strains of different climatic origin.Key words: Xenorhabdus, temperature, psychrotroph, mesophile, fatty acid, isozyme.


2010 ◽  
Vol 56 (12) ◽  
pp. 1028-1039 ◽  
Author(s):  
Jerry Chao ◽  
Gideon M. Wolfaardt ◽  
Michael T. Arts

The fatty acid composition of Pseudomonas aeruginosa PAO1 was compared between biofilm and batch planktonic cultures. Strain PAO1 biofilms were able to maintain a consistent fatty acid profile for up to 6 days, whereas strain PAO1 batch planktonic cultures showed a gradual loss of cis-monounsaturated fatty acids over 4 days. Biofilms exhibited a greater proportion of hydroxy fatty acids but a lower proportion of both cyclopropane fatty acids and saturated fatty acids (SAFAs). SAFAs with ≥16 carbons, in particular, decreased in biofilms when compared with that in batch planktonic cultures. A reduced proportion of SAFAs and a decline in overall fatty acid chain length indicate more fluidic biophysical properties for cell membranes of P. aeruginosa in biofilms. Separating the biofilms into 2 partitions and comparing their fatty acid compositions revealed additional trends that were not observed in the whole biofilm: the shear-nonremovable layer consistently showed greater proportions of hydroxy fatty acid than the bulk liquid + shear-removable portion of the biofilm. The shear-nonremovable portion demonstrated a relatively immediate decline in the proportion of monounsaturated fatty acids between days 2 and 4; which was offset by an increase in the proportion of cyclopropane fatty acids, specifically 19:0cyc(11,12). Simultaneously, the shear-removable portion of the biofilm showed an increase in the proportion of trans-monounsaturated fatty acids and cyclopropane fatty acids.


2000 ◽  
Vol 28 (6) ◽  
pp. 855-856 ◽  
Author(s):  
J. Edqvist ◽  
I. Farbos

In Euphorbia lagascae the major fatty acid in triacylglycerol is the epoxidated fatty acid vernolic acid (cis- 12-epoxyoctadeca-cis-9-enoic acid). The enzymic reactions occurring during the catabolism of epoxidated fatty acids during germination are not known, but it seems likely that the degradation requires the activity of an epoxide hydrolase. Epoxide hydrolases are a group of functionally related enzymes that catalyse the cofactor-independent hydrolysis of epoxides to their corresponding vicinal diols by the addition of a water molecule. Here we report the cloning and characterization of an epoxide hydrolase gene from E. lagascae. The structure of the gene is unusual since it lacks introns. A detailed investigation of the transcription pattern of the epoxide hydrolase gene shows that the gene is induced during germination. We have used in situ hybridization to identify in which tissues the gene is expressed during germination. We speculate that this epoxide hydrolase enzyme is involved in the catabolism of epoxidated fatty acids during germination of E. lagascae seeds.


1970 ◽  
Vol 117 (1) ◽  
pp. 9-15 ◽  
Author(s):  
P. Kemp ◽  
M. W. Smith

1. The fatty acid composition of whole goldfish, whole-intestinal mucosa, intestinal mucosal membranes and individual phospholipids extracted from mucosal membranes were measured, fish adapted to different temperatures being used. 2. Alterations of the adaptation temperature did not noticeably affect the fatty acid composition of the whole-fish lipids, but there were marked changes in the fatty acids of lipids extracted from homogenates of goldfish intestinal mucosa. These changes were more pronounced in a membrane fraction prepared from these homogenates. Raising the adaptation temperature by 20°C halved the percentage of C20:1, C20:4 and C22:6 fatty acids and nearly doubled the percentage of C18:0 and C20:3 fatty acids recovered. 3. Choline phosphoglycerides constituted about one-half and ethanolamine phosphoglycerides about one-quarter of the total membrane phospholipids. 4. The fatty acids of choline and ethanolamine phosphoglycerides were more susceptible to temperature-dependent changes than were the phosphoglycerides of inositol or serine. 5. The increase in C18:0 fatty acid that occurred in membranes of warm-adapted fish was greatest for ethanolamine phosphoglycerides, but increases also occurred in other phospholipid fractions and in membrane neutral lipids.


2002 ◽  
Vol 283 (4) ◽  
pp. F640-F647 ◽  
Author(s):  
Mark E. Thomas ◽  
Kevin P. G. Harris ◽  
John Walls ◽  
Peter N. Furness ◽  
Nigel J. Brunskill

The role of the albumin-carried fatty acids in the induction of tubulointerstitial injury was studied in protein-overload proteinuria. Rats were injected with fatty acid-carrying BSA [FA(+)BSA], fatty acid-depleted BSA [FA(−)BSA], or saline. Macrophage infiltration was measured by immunohistochemical staining, apoptotic cells were detected by in situ end labeling, and proliferating cells were identified by in situ hybridization for histone mRNA. Macrophage infiltration was significantly greater in the FA(+)BSA group than in the FA(−)BSA and saline groups. The infiltrate was largely restricted to the outer cortex. Apoptosis was greater in the FA(+)BSA group than in the FA(−)BSA and saline groups. Compared with the saline group, apoptosis was significantly increased in the FA(+)BSA group but not in the FA(−)BSA group. Cortical cells proliferated significantly more in the FA(+)BSA and FA(−)BSA groups than in the saline group. FA(+)BSA is therefore a more potent inducer of macrophage infiltration and cell death than FA(−)BSA. The fatty acids carried on albumin may be the chief instigators of tubulointerstitial injury in protein-overload proteinuria.


2019 ◽  
Vol 1 (1) ◽  
pp. 010-016
Author(s):  
Abdel Maksoud Hussein ◽  
Mahfouz Khaid Mohamed ◽  
Afaf Abd Elmagid Desoky ◽  
Yomna Hegazy

The objective of the present study was to evaluate the antimicrobial effect of short and medium fatty acid chain. Total number of 2000 Cobb broiler chicks (mixed sexes) were commercially purchased from EL Dakahlia poultry company that were 1d old were reared up to 40d of age. Corn and soybean meal based starter and grower diet were supplemented. Chicken were randomly divided in to two main group, 1st group act as normal control, 2nd group was add C12( mixed short and medium fatty acid) in drinking water for 3 day each 8 day at 11, 22 and 33 days age. Blood sample were collected before and after taking C12 treatment for biochemical examination. Supplementation of C12 caused decrease in serum level of AST, ALT, glucose, cholesterol, triglyceride, and pro-inflammatory cytokines as IL-6, increase HDL and total protein. Evaluation of antimicrobial activity of C12.


Sign in / Sign up

Export Citation Format

Share Document