Global Buckling Behavior of CFST Columns with Assembling Errors

Author(s):  
Si-Ming Zhou ◽  
Jing-Zhong Tong ◽  
Gen-Shu Tong ◽  
Zhang Lei ◽  
Xiang Jiang ◽  
...  

Concrete-filled steel tubular (CFST) column has been widely used in engineering practice. In the process of assembling two columns to form a slender member, assembling errors (AE) are inevitably produced at the section of connection. When the AE are too large, the global buckling resistance of slender column would be significantly affected. Therefore, it is necessary to investigate the influence of AE on the stability performance of slender CFST columns. In this study, an axial compressive test involving three CFST columns with AE (AE-CFST columns) was conducted. A refined finite element (FE) model is established for further parametric analysis. Based on a simplified analytical model by analyzing the isolated steel connecting plate, a theoretical formula is proposed for predicting the critical thickness [Formula: see text] of the connecting plate. When the thickness [Formula: see text] of the connecting plate meets its requirement, the failure at the section of connection caused by AE could be effectively prevented. Stability design curves considering the influence of AE ratio (the ratio between assembling error and sectional depth of column) are proposed based on numerous FE examples. It is found that the proposed design curves are reliable for the design of AE-CFST columns with different AE ratios.

Author(s):  
Seung-Ho Yang ◽  
Jong-Jin Jung ◽  
Yun-Hak Kim ◽  
Woo-Seob Lee ◽  
Jong-Bae Kim

In recent years, requirement for the consideration of global buckling due to high pressure/high temperature (HP/HT) condition has increased in the detailed design of offshore pipelines on a seabed. The interaction between pipeline and seabed including support structures or sleepers gives a significant effect on buckling behavior. Global lateral buckling analysis has been carried out to assess the stability of offshore HP/HT pipelines considering the interaction between HP/HT submarine pipeline system/foundation structure and seabed. A non-linear finite element method is used in the present static analysis using the ABAQUS program. The FE model considers concrete sleepers as well as 3-D profile of the seabed. The stress distribution and lateral amplitude of the pipeline were evaluated and remedial measures were suggested to ensure that pipe stresses and strains are kept within allowable limits. Sleepers are designed as a buckle trigger which can provide artificial imperfection to allow pipe to move laterally and mitigate axial force. Comparative study could provide design strategy of pipeline related to sleeper supports.


2021 ◽  
Author(s):  
Jing-Zhong Tong ◽  
En-Yuan Zhang ◽  
Yan-Lin Guo ◽  
Chao-Qun Yu

Abstract Compared with traditional BRB, the steel-angles-assembled buckling-restrained brace (SAA-BRB) is an innovative BRB with light-weight, accurate control of the geometrical dimensions, easy installation and convenient disassembly. The SAA-BRB is composed of an external restraining system and a cruciform-sectional inner core. The external restraining system is assembled by four steel angles with the connection of high-strength bolts, and the spacers are installed between the inner core and the restraining system. In this study, the hysteretic behavior of SAA-BRB was investigated by experiments and finite element (FE) simulations. Firstly, three SAA-BRB specimens with different restraining ratios were tested under cyclic loads to investigate the hysteretic performance. It was found that all specimens exhibited stable responses and satisfactory energy-dissipating capabilities during the whole loading process. Then, a refined FE model was established, and its validity in predicting the hysteretic responses of SAA-BRB was verified by the experiments. Moreover, based on the yielding criteria of the outmost fiber for the restraining member section, a design formula for the restraining ratio requirements to avoid global buckling of the SAA-BRB was deduced. Finally, extensive parametric analysis was conducted to verify the accuracy of the design formula by changing the geometric dimensions (the restraining ratio) of models. It was found that the proposed formula for the restraining ratio requirement could lead to a conservative prediction with reasonable accuracy, thus providing valuable references for global buckling design of SAA-BRBs in engineering practice.


Author(s):  
Changliang Lai ◽  
Qianqian Sui ◽  
Hualin Fan

To develop large-span but ultralight lattice truss columns, a hierarchical IsoTruss column (HITC) was proposed. The multi-buckling behavior of the axially compressed HITC was analyzed by the finite element method (FEM) using a parametric approach in the framework of ANSYS parametric design language (APDL). It was demonstrated that the program enables efficient generation of the finite element (FE) model, while facilitating the parametric design of the HITC. Using this program, the effects of helical angles and brace angles on the buckling behavior of the HITC were investigated. Depending on the helical angles and brace angles, the HITCs mainly have three buckling modes: the global buckling, the first-order local buckling and the second-order local buckling. Theoretical multi-buckling models were established to predict the critical buckling loads. Buckling failure maps based on the theoretical analyses were also developed, which can be useful in preliminary design of such structures.


2013 ◽  
Vol 846-847 ◽  
pp. 190-194
Author(s):  
Shu Jun Yin ◽  
Xue Ren Li ◽  
Ji Geng Luo

The paper designs a three-phase high voltage power supply system based on active disturbance rejection controller which make single-chip microcomputer ATmega128 as the main control chip and the system improve the stability and control precision of dust removing power. Engineering practice shows that, the DC power supply system has the advantages of convenient operation, high work efficiency, system stability.


2016 ◽  
Vol 28 (14) ◽  
pp. 1886-1904 ◽  
Author(s):  
Vijaya VN Sriram Malladi ◽  
Mohammad I Albakri ◽  
Serkan Gugercin ◽  
Pablo A Tarazaga

A finite element (FE) model simulates an unconstrained aluminum thin plate to which four macro-fiber composites are bonded. This plate model is experimentally validated for single and multiple inputs. While a single input excitation results in the frequency response functions and operational deflection shapes, two input excitations under prescribed conditions result in tailored traveling waves. The emphasis of this article is the application of projection-based model reduction techniques to scale-down the large-scale FE plate model. Four model reduction techniques are applied and their performances are studied. This article also discusses the stability issues associated with the rigid-body modes. Furthermore, the reduced-order models are utilized to simulate the steady-state frequency and time response of the plate. The results are in agreement with the experimental and the full-scale FE model results.


2021 ◽  
Author(s):  
Saika Iwamatsu ◽  
Yasunori Nihei ◽  
Kazuhiro Iijima ◽  
Tomoki Ikoma ◽  
Tomoki Komori

Abstract In this study, a series of dedicated water tank tests were conducted in wind and waves to investigate the stability performance and turning motion of Floating Offshore Wind Turbine (FOWT) equipped with two vertical axis wind turbines (VAWT). The FOWT targeted in this study is called Multi-connection VAWT, which is a new type of FOWT moored by Single-Point-Mooring (SPM) system. We designed and manufactured two types of semi-submersible floating bodies. One is a type in which VAWTs are mounted in two places of a right-angled isosceles triangle (Type-A) on a single floater, and the other is two independent units equipped with VAWTs on two separate floaters centered on a moored body. This is a type in which two semi-submersible floating bodies are lined up in a straight line (Type-B). The experimental conditions were determined by scaling down to 1/100 using Froude’s scaling law based on a wind thrust load of 320 kN (rated wind speed of 12 m/s) assuming an actual machine. In the free yawing test in waves, Type-A turned downwards, while Type-B was barely affected by the waves. Furthermore, in the free yawing test in wind, both Type-A and Type-B turned leeward and stabilized at a final point where the wind load was balanced.


2012 ◽  
Vol 510 ◽  
pp. 667-672
Author(s):  
Jia Lin Zhou ◽  
Chen Gang Pan ◽  
Xiao Yong Zhang

This article established 3D FE model of dual-radius arc finishing groove and tangent expansion angle finishing groove using ANSYS / LS-DYNA software for Wuhan Iron and Steel plant Ф16 hot continuous bar, and analyzed metal flow pattern, stress and strain distribution of two types finishing grooves. The results show that surface stress and strain distribution of dual-radius arc finishing groove have better uniform than them of tangent expansion angle finishing groove, and dual-radius arc finishing groove ensures the stability of the rolled piece in finishing groove, improve the dimensional accuracy and surface quality of rolled finishing product.


2011 ◽  
Vol 90-93 ◽  
pp. 2307-2312 ◽  
Author(s):  
Wen Jiang Li ◽  
Su Min Zhang ◽  
Xian Min Han

The stability judgement of surrounding rock is one of the key jobs in tunnel engineering. Taking the Erlongdong fault bundle section of Guanjiao Tunnel as the background, the stability of surrounding rock during construction of soft rock tunnel was discussed preliminarily. Based on plastic strain catastrophe theory, and combining numerical results and in-situ data, the limit displacements for stability of surrounding rock were analyzed and obtained corresponding to the in-situ monitoring technology. It shows that the limit displacements obtained corresponds to engineering practice primarily. The plastic strain catastrophe theory under unloading condition provides new thought for ground stability of deep soft rock tunnel and can be good guidance and valuable reference to construction decision making and deformation managing of similar tunnels.


2011 ◽  
Vol 189-193 ◽  
pp. 2366-2370
Author(s):  
Jun Hong Li

For the loess cave characteristics, such as the thin coverage soil layer at the hole top, the poor self-stabilizing capacity, the large disturbance deformation after excavation and the easy collapse, thus in this paper, the loess cave safety factor is obtained by the method of strength reduction. And the stability calculation analysis is much more perfect. The Northwest Area Lishi loess cave is used in this paper, and the idea of strength reduction finite element method is applied, based on the Drucker-Prager yield criterion, the loess cave static stability analysis is made by the software of ANSYS.The results show that the actual situation can be reflected by the method of finite element strength subtraction. And the obtained loess cave stability coefficient is much closer to the actual steady state, thus showing the certain advantages of stability analysis.The method is also adopted in this paper. And its feasibility can be applied to the engineering practice, also a theoretical basis of reference is provided for engineering application.


2010 ◽  
Vol 10 (04) ◽  
pp. 871-884 ◽  
Author(s):  
E. KARACHALIOS ◽  
C. VRETTOS ◽  
Z. MARIOLI-RIGA ◽  
C. BISAGNI ◽  
P. CORDISCO ◽  
...  

Prediction of the buckling behavior of structures is of great interest in the aerospace industry, and extensive research is taking place worldwide in that area. The current work concerns numerical simulation of the collapse test of a closed stiffened composite box subjected to compression followed by torsion. Numerical simulation is performed and the results are correlated with experimental findings. The objective is to validate the numerical model and detect any deficiencies of the modeling procedure. For this purpose, a series of quantities numerically predicted are directly compared with experimental ones: strains, displacements, deformation plots and load–displacement curves. The physical test article also contains artificial stringer–skin debondings realized via Teflon film inserts. The energy release rates are calculated at the debonding front using the virtual crack closure technique. The FE model is slightly stiffer than the actual structure but the numerical results are at a reasonable level of agreement with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document