closed universe
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 32)

H-INDEX

17
(FIVE YEARS 4)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 73
Author(s):  
Branko Dragovich

In this paper, we introduce a new type of matter that has origin in p-adic strings, i.e., strings with a p-adic worldsheet. We investigate some properties of this p-adic matter, in particular its cosmological aspects. We start with crossing symmetric scattering amplitudes for p-adic open strings and related effective nonlocal and nonlinear Lagrangian which describes tachyon dynamics at the tree level. Then, we make a slight modification of this Lagrangian and obtain a new Lagrangian for non-tachyonic scalar field. Using this new Lagrangian in the weak field approximation as a matter in Einstein gravity with the cosmological constant, one obtains an exponentially expanding FLRW closed universe. At the end, we discuss the obtained results, i.e., computed mass of the scalar p-adic particle, estimated radius of related closed universe and noted p-adic matter as a possible candidate for dark matter.


2021 ◽  
Vol 104 (12) ◽  
Author(s):  
R. R. Soldati ◽  
L. S. Menicucci ◽  
N. Yokomizo

Author(s):  
Bianca Dittrich ◽  
Steffen Gielen ◽  
Susanne Schander

Abstract We employ the methods of discrete (Lorentzian) Regge calculus for analysing Lorentzian quantum cosmology models with a special focus on discrete analogues of the no-boundary proposal for the early universe. We use a simple 4-polytope, a subdivided 4-polytope and shells of discrete 3-spheres as triangulations to model a closed universe with cosmological constant, and examine the semiclassical path integral for these different choices. We find that the shells give good agreement with continuum results for small values of the scale factor and in particular for finer discretisations of the boundary 3-sphere, while the simple and subdivided 4-polytopes can only be compared with the continuum in certain regimes, and in particular are not able to capture a transition from Euclidean geometry with small scale factor to a large Lorentzian one. Finally, we consider a closed universe filled with dust particles and discretised by shells of 3-spheres. This model can approximate the continuum case quite well. Our results embed the no-boundary proposal in a discrete setting where it is possibly more naturally defined, and prepare for its discussion within the realm of spin foams.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Davide Astesiano ◽  
S.L. Cacciatori

Abstract We find a new non BPS solution in N = 2 D = 4 gauged supergravity coupled to U(1) gauge fields and matter. It consists in a closed universe with two extremal black holes of equal size, surrounding two singularities. They have opposite magnetic charges (and no electric charges), but stay in static equilibrium thanks to the positive pressure of a cosmological constant. The geometry is perfectly symmetric under the exchange of the black holes and the flip of the sign of the charges. However the scalar field is non constant and non symmetric, with different values at the horizons, which depend on a real modulus. Remarkably we show that it satisfies the attractor mechanism and the entropy indeed depends only on the magnetic charges. At one of the horizons the solution becomes $$ \frac{1}{2} $$ 1 2 -BPS supersymmetric, while at the other one there is no supersymmetry, but the entropy remains independent from the scalar modulus.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Mark Van Raamsdonk

Abstract Certain closed-universe big-bang/big-crunch cosmological spacetimes may be obtained by analytic continuation from asymptotically AdS Euclidean wormholes, as emphasized by Maldacena and Maoz. We investigate how these Euclidean wormhole spacetimes and their associated cosmological physics might be described within the context of AdS/CFT. We point out that a holographic model for cosmology proposed recently in arXiv:1810.10601 can be understood as a specific example of this picture. Based on this example, we suggest key features that should be present in more general examples of this approach to cosmology. The basic picture is that we start with two non-interacting copies of a Euclidean holographic CFT associated with the asymptotic regions of the Euclidean wormhole and couple these to auxiliary degrees of freedom such that the original theories interact strongly in the IR but softly in the UV. The partition function for the full theory with the auxiliary degrees of freedom can be viewed as a product of partition functions for the original theories averaged over an ensemble of possible sources. The Lorentzian cosmological spacetime is encoded in a wavefunction of the universe that lives in the Hilbert space of the auxiliary degrees of freedom.


2021 ◽  
Author(s):  
Andre Steynberg

Abstract A successful single parameter model has been formulated to match the observations of photons from type 1a supernovae which were previously used to corroborate the standard 𝛬 cold dark matter model. The new single parameter model extrapolates all the way back to the cosmic background radiation (CMB) without requiring a separate model to describe inflation of the space dimensions after the Big Bang. The model for the redshift progression of a photon is: 1 + z =\(\frac{\text{sin}\left(\frac{13.8}{T}\right)\pi /2}{\text{sin}\left(\frac{t}{T}\right)\pi /2}\) T is the fitted parameter and t is the time when the photon was emitted, both measured in billions of years from time zero in the Big Bang. The angle is expressed in radians. The number 13.8 should be updated if an improved estimate for the time elapsed since the Big Bang is found. The single parameter model assumes that spacetime forms a finite symmetrical manifold with positive curvature.


Author(s):  
U V Satya Seshavatharam ◽  
S Lakshminarayana

By modifying the basic definition of cosmic red shift, considering ‘speed of light’ as an absolute cosmic expansion rate and adopting ‘Planck mass’ as the basic seed of the observed large scale universe, it is certainly possible to review and revise the basic picture of ‘standard cosmology’ and in near future, a perfect model of ‘white hole cosmology’ can be developed. In this context we have developed five assumptions. First three assumptions are based on ‘time reversed’ black holes and seem to be well connected with General theory of relativity as well as Quantum mechanics. 4th and 5th assumptions are helpful in understanding current galactic dark matter and flat rotation speeds. It may be noted that, considering our first three assumptions and considering the Planck Legacy 2018 data’s enhanced lensing amplitude in cosmic microwave background power spectra - conceptually, a closed universe having a positive curvature seems to be a best fit for the observed universe. With reference to our recent publication [26], for clarity on the subject, in this short communication, we make an attempt to review and explain our proposed assumptions at fundamental level. Our aim is to see that, professional and non-professional cosmologists must understand the basics of workable quantum cosmology.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Seamus Fallows ◽  
Simon F. Ross

Abstract We investigate the appearance of islands when a closed universe with gravity is entangled with a non-gravitating quantum system. We use braneworlds in three-dimensional multiboundary wormhole geometries as a model to explore what happens when the non-gravitating system has several components. The braneworld can be either completely contained in the entanglement wedge of one of the non-gravitating systems or split between them. In the former case, entanglement with the other system leads to a mixed state in the closed universe, unlike in simpler setups with a single quantum system, where the closed universe was necessarily in a pure state. We show that the entropy of this mixed state is bounded by half of the coarse-grained entropy of the effective theory on the braneworld.


Sign in / Sign up

Export Citation Format

Share Document