intrahepatic vascular resistance
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 15 (1) ◽  
pp. 36-50
Author(s):  
Sonia Selicean ◽  
Cong Wang ◽  
Sergi Guixé-Muntet ◽  
Horia Stefanescu ◽  
Norifumi Kawada ◽  
...  

AbstractPortal hypertension is the main non-neoplastic complication of chronic liver disease, being the cause of important life-threatening events including the development of ascites or variceal bleeding. The primary factor in the development of portal hypertension is a pathological increase in the intrahepatic vascular resistance, due to liver microcirculatory dysfunction, which is subsequently aggravated by extra-hepatic vascular disturbances including elevation of portal blood inflow. Evidence from pre-clinical models of cirrhosis has demonstrated that portal hypertension and chronic liver disease can be reversible if the injurious etiological agent is removed and can be further promoted using pharmacological therapy. These important observations have been partially demonstrated in clinical studies. This paper aims at providing an updated review of the currently available data regarding spontaneous and drug-promoted regression of portal hypertension, paying special attention to the clinical evidence. It also considers pathophysiological caveats that highlight the need for caution in establishing a new dogma that human chronic liver disease and portal hypertension is reversible.


2019 ◽  
Vol 39 (04) ◽  
pp. 483-501 ◽  
Author(s):  
Ksenia Brusilovskaya ◽  
Philipp Königshofer ◽  
Philipp Schwabl ◽  
Thomas Reiberger

AbstractPortal hypertension is the main driver for severe complications in patients with liver cirrhosis. With improved understanding of molecular pathways that promote hepatic vascular remodeling, vasoconstriction, and sinusoidal capillarization potential vascular targets for the treatment of portal hypertension have been identified. Inhibition of vascular endothelial and platelet-derived growth factors–driven angiogenesis has been shown to reduce portal pressure and decrease hepatic inflammation. Angiopoietin/Tie signaling represents additional promising vascular targets in liver disease. The eNOS-NO-sGC-cGMP pathway modulates sinusoidal vasoconstriction and capillarization. Nuclear farnesoid X receptor (FXR) agonists decrease intrahepatic vascular resistance by inhibition of fibrogenesis and sinusoidal remodeling. Statins ameliorate endothelial dysfunction, decrease portal pressure, and reduce fibrogenesis. Anticoagulation with low-molecular heparin or anti-Xa inhibitors improved portal hypertension by deactivation of hepatic stellate cells and potentially via reduction of sinusoidal microthrombosis. This review summarizes important vascular targets for treatment of portal hypertension that have shown promising results in experimental studies.


2018 ◽  
Vol 132 (12) ◽  
pp. 1341-1343
Author(s):  
Audrey Payancé ◽  
Pierre-Emmanuel Rautou

Data on the consequences of cirrhosis regression on portal hypertension and on splanchnic and systemic hemodynamic are scarce. Previous studies have reported a decrease in hepatic venous pressure gradient following antiviral treatment in patients with hepatitis B or C related cirrhosis. However, these studies did not investigate splanchnic and systemic hemodynamic changes associated with virus control. To fill this gap in knowledge, in a recent issue of Clinical Science, Hsu et al. (vol. 132, issue 6, 669-683) used rat models of cirrhosis induced by thioacetamide and by bile duct ligation and provided a comprehensive analysis of the effects of cirrhosis regression on splanchnic and systemic hemodynamics. They observed a significant reduction in portal pressure accompanied by a normalization of systemic hemodynamic (normal cardiac index and systemic vascular resistance) and a decrease in intrahepatic vascular resistance. No change in extrahepatic vascular structures were observed despite normalization of collateral shunting, meaning that portosystemic collaterals persist but are not perfused. One intriguing part of their results is the only marginal effect of cirrhosis regression on liver hyperarterialisation. This result suggests that changes in splanchnic hemodynamic features induced by cirrhosis remain when hepatic vascular resistance decreases, raising the hypothesis of an autonomous mechanism persisting despite regression of intrahepatic vascular resistance. Microbiota changes and bacterial translocation might account for this effect. In conclusion cirrhosis regression normalizes systemic hemodynamics, but some splanchnic hemodynamic changes persist including extrahepatic angiogenesis and liver hyperarterialization.


2018 ◽  
Vol 11 ◽  
pp. 175628481881129 ◽  
Author(s):  
Marina Vilaseca ◽  
Sergi Guixé-Muntet ◽  
Anabel Fernández-Iglesias ◽  
Jordi Gracia-Sancho

Portal hypertension represents one of the major clinical consequences of chronic liver disease, having a deep impact on patients’ prognosis and survival. Its pathophysiology defines a pathological increase in the intrahepatic vascular resistance as the primary factor in its development, being subsequently aggravated by a paradoxical increase in portal blood inflow. Although extensive preclinical and clinical research in the field has been developed in recent decades, no effective treatment targeting its primary mechanism has been defined. The present review critically summarizes the current knowledge in portal hypertension therapeutics, focusing on those strategies driven by the disease pathophysiology and underlying cellular mechanisms.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Can-Jie Guo ◽  
Qin Pan ◽  
Hua Xiong ◽  
Yu-Qi Qiao ◽  
Zhao-Lian Bian ◽  
...  

Intrahepatic portal hypertension accounts for most of the morbidity and mortality encountered in patients with liver cirrhosis, due to increased portal inflow and intrahepatic vascular resistance. Most treatments have focused only on portal inflow or vascular resistance. However, miRNA multitarget regulation therapy may potentially intervene in these two processes for therapeutic benefit in cirrhosis and portal hypertension. This review presents an overview of the most recent knowledge of and future possibilities for the use of miRNA therapy. The benefits of this therapeutic modality—which is poorly applied in the clinical setting—are still uncertain. Increasing the knowledge and current understanding of the roles of miRNAs in the development of intrahepatic portal hypertension and hepatic stellate cells (HSCs) functions, as well as their potential as novel drug targets, is critical.


2009 ◽  
Vol 81 (3) ◽  
pp. 431-442 ◽  
Author(s):  
Maria Kouyoumdjian ◽  
Marcia R. Nagaoka ◽  
Mauricio R. Loureiro-Silva ◽  
Durval R. Borges

Portal hypertension is the most common complication of chronic liver diseases, such as cirrhosis. The increased intrahepatic vascular resistance seen in hepatic disease is due to changes in cellular architecture and active contraction of stellate cells. In this article, we review the historical aspects of the kallikrein-kinin system, the role of bradykinin in the development of disease, and our main findings regarding the role of this nonapeptide in normal and experimentalmodels of hepatic injury using the isolated rat liver perfusion model (mono and bivascular) and isolated liver cells. We demonstrated that: 1) the increase in intrahepatic vascular resistance induced by bradykinin is mediated by B2 receptors, involving sinusoidal endothelial and stellate cells, and is preserved in the presence of inflammation, fibrosis, and cirrhosis; 2) the hepatic arterial hypertensive response to bradykinin is calcium-independent and mediated by eicosanoids; 3) bradykinin does not have vasodilating effect on the pre-constricted perfused rat liver; and, 4) after exertion of its hypertensive effect, bradykinin is degraded by angiotensin converting enzyme. In conclusion, the hypertensive response to BK is mediated by the B2 receptor in normal and pathological situations. The B1 receptor is expressed more strongly in regenerating and cirrhotic livers, and its role is currently under investigation.


Sign in / Sign up

Export Citation Format

Share Document