tissue osmolality
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 1)

H-INDEX

16
(FIVE YEARS 0)

2020 ◽  
pp. ASN.2020070930
Author(s):  
Christian Hinze ◽  
Nikos Karaiskos ◽  
Anastasiya Boltengagen ◽  
Katharina Walentin ◽  
Klea Redo ◽  
...  

BackgroundSingle-cell transcriptomes from dissociated tissues provide insights into cell types and their gene expression and may harbor additional information on spatial position and the local microenvironment. The kidney’s cells are embedded into a gradient of increasing tissue osmolality from the cortex to the medulla, which may alter their transcriptomes and provide cues for spatial reconstruction.MethodsSingle-cell or single-nuclei mRNA sequencing of dissociated mouse kidneys and of dissected cortex, outer, and inner medulla, to represent the corticomedullary axis, was performed. Computational approaches predicted the spatial ordering of cells along the corticomedullary axis and quantitated expression levels of osmo-responsive genes. In situ hybridization validated computational predictions of spatial gene-expression patterns. The strategy was used to compare single-cell transcriptomes from wild-type mice to those of mice with a collecting duct–specific knockout of the transcription factor grainyhead-like 2 (Grhl2CD−/−), which display reduced renal medullary osmolality.ResultsSingle-cell transcriptomics from dissociated kidneys provided sufficient information to approximately reconstruct the spatial position of kidney tubule cells and to predict corticomedullary gene expression. Spatial gene expression in the kidney changes gradually and osmo-responsive genes follow the physiologic corticomedullary gradient of tissue osmolality. Single-nuclei transcriptomes from Grhl2CD−/− mice indicated a flattened expression gradient of osmo-responsive genes compared with control mice, consistent with their physiologic phenotype.ConclusionsSingle-cell transcriptomics from dissociated kidneys facilitated the prediction of spatial gene expression along the corticomedullary axis and quantitation of osmotically regulated genes, allowing the prediction of a physiologic phenotype.


2013 ◽  
Vol 305 (3) ◽  
pp. F407-F416 ◽  
Author(s):  
Yue Zhang ◽  
Lijun Li ◽  
Donald E. Kohan ◽  
Carolyn M. Ecelbarger ◽  
Bellamkonda K. Kishore

Whole body knockout (KO) of the P2Y2 receptor (P2Y2R) results in enhanced vasopressin V2 receptor activity and increased renal Na+ conservation. We hypothesized that P2Y2R KO mice would be less sensitive to lithium-induced natriuresis and kaliuresis due to attenuated downregulation of one or more of the major renal Na+ or K+ transporter/channel proteins. KO and wild-type (WT) mice were fed a control or lithium-added diet (40 mmol/kg food) for 14 days. Lithium-induced natriuresis and kaliuresis were significantly (∼25%) attenuated in KO mice. The subunits of the epithelial Na+ channel (ENaC) were variably affected by lithium and genotype, but, overall, medullary levels were decreased substantially by lithium (15–60%) in both genotypes. In contrast, cortical, β-, and γ-ENaC were increased by lithium (∼50%), but only in WT mice. Moreover, an assessment of ENaC activity by benzamil sensitivity suggested that lithium increased ENaC activity in WT mice but in not KO mice. In contrast, medullary levels of Na+-K+-2Cl− cotransporter 2 and cortical levels of the renal outer medullary K+ channel were not downregulated by lithium and were significantly (15–76%) higher in KO mice under both dietary conditions. In addition, under control conditions, tissue osmolality of the inner medulla as well as furosemide sensitivity were significantly higher in KO mice versus WT mice. Therefore, we suggest that increased expression of these proteins, particularly in the control state, reduces Na+ delivery to the distal nephron and provides a buffer to attenuate collecting duct-mediated natriuresis and kaliuresis. Additional studies are warranted to explore the potential therapeutic benefits of purinergic antagonism.


2007 ◽  
Vol 22 (5) ◽  
pp. 1-8 ◽  
Author(s):  
Tatsuro Kawamata ◽  
Tatsuro Mori ◽  
Shoshi Sato ◽  
Yoichi Katayama

Severe cerebral contusion is often associated with nonhemorrhagic mass effect that progresses rapidly within 12 to 48 hours posttrauma. The mechanisms underlying such a rapid progression of mass effect cannot be fully explained by classic concepts of vasogenic and cytotoxic brain edema. Data from previous clinical trials, including diffusion-weighted magnetic resonance imaging studies, have indicated that cells in the central (core) area of the contusion undergo shrinkage, disintegration, and homogenization, whereas cellular swelling is located predominately in the peripheral (rim) area during this period. The authors hypothesized that high osmolality within the contused brain tissue generates an osmotic potential across the central and peripheral areas or causes blood to accumulate a large amount of water. To elucidate the role of tissue osmolality in contusion edema, they investigated changes in tissue osmolality, specific gravity, and ion concentration in contused brain in both experimental and clinical settings. Their results demonstrated that cerebral contusion induced a rapid increase in tissue osmolality from a baseline level of 311.4 ± 11.3 to 402.8 ± 15.1 mOsm at 12 hours posttrauma (p < 0.0001). Specific gravity in tissue significantly decreased from 1.0425 ± 0.0026 to 1.0308 ± 0.0028 (p < 0.01), reflecting water accumulation in contused tissue. The total ionic concentration [Na+] + [K+] + [Cl−] did not change significantly at any time point. Inorganic ions do not primarily contribute to this elevation in osmolality, suggesting that the increase in colloid osmotic pressure through the metabolic production of osmoles or the release of idiogenic osmoles can be a main cause of contusion edema.


2007 ◽  
Vol 292 (5) ◽  
pp. F1322-F1333 ◽  
Author(s):  
Rikke Nørregaard ◽  
Boye L. Jensen ◽  
Sukru Oguzkan Topcu ◽  
Maria Diget ◽  
Horst Schweer ◽  
...  

Release of bilateral ureteral obstruction (BUO) is associated with reduced expression of renal aquaporins (AQPs), polyuria, and impairment of urine-concentrating capacity. Recently, we demonstrated that 24 h of BUO is associated with increased cyclooxygenase (COX)-2 expression in the inner medulla (IM) and that selective COX-2 inhibition prevents downregulation of AQP2. In the present study, we tested the hypothesis that COX-2 activity increases in the postobstructive phase and that this increase in COX-2 activity contributes to polyuria and impaired urine-concentrating capacity. We examined the effect of the selective COX-2 inhibitor parecoxib (5 mg·kg−1·day−1 via osmotic minipumps) on renal functions and protein abundance of AQP2, AQP3, Na-K-2Cl cotransporter type 2 (NKCC2), and Na-K-ATPase 3 days after release of BUO. At 3 days after release of BUO, rats exhibited polyuria, dehydration and urine and IM tissue osmolality were decreased. There were inverse changes of COX-1 and COX-2 in the IM: COX-2 mRNA, protein, and activity increased, while COX-1 mRNA and protein decreased. Parecoxib reduced urine output 1 day after release of BUO, but sodium excretion and glomerular filtration rate were unchanged. Parecoxib normalized urinary PGE2 and PGI2 excretion and attenuated downregulation of AQP2 and AQP3, while phosphorylated AQP2 and NKCC2 remained suppressed. Parecoxib did not improve urine-concentrating capacity in response to 24 h of water deprivation. We conclude that decreased NKCC2 and collapse of the IM osmotic gradient, together with suppressed phosphorylated AQP2, are likely causes for the impaired urine-concentrating capacity and that COX-2 activity is not likely to mediate these changes in the chronic postobstructive phase after ureteral obstruction.


1999 ◽  
Vol 10 (10) ◽  
pp. 2067-2075
Author(s):  
TAKASHI MURASE ◽  
CAROLYN A. ECELBARGER ◽  
ERIN A. BAKER ◽  
YING TIAN ◽  
MARK A. KNEPPER ◽  
...  

Abstract. Recent results indicate that renal escape from vasopressin-induced antidiuresis is accompanied by a marked downregulation of whole kidney aquaporin-2 (AQP-2) protein and mRNA expression. However, in those studies, the escaped animals were also markedly hypo-osmolar compared to controls as a result of water loading during antidiuresis. The present studies evaluated whether systemic or local osmolality contributes to the downregulation of AQP-2 expression in this model. In the first study, two groups of 1-deamino-[8-D-arginine]-vasopressin (dDAVP)-infused rats were water-loaded; after establishment of escape, one group was then water-restricted for 4 d to reverse the escape, whereas the other group continued daily water loading. Whole kidney AQP-2 protein was measured by Western blotting, and inner medulla AQP-2 mRNA was determined by Northern blotting. Results were compared to dDAVP-infused rats fed solid chow. After 4 d of water restriction, urine volume decreased to the same level as in the rats on solid chow; however, plasma sodium concentrations and plasma osmolality remained low. Despite maintenance of significant hypo-osmolality, rats in which escape was subsequently reversed by water restriction reestablished high dDAVP-stimulated kidney levels of AQP-2 after 4 d of water restriction.In the second study, AQP-2 expression was evaluated in different regions of kidneys from water-loaded rats undergoing escape from antidiuresis. Despite markedly different interstitial osmolalities, significant downregulation of AQP-2 expression compared to dDAVP-infused control rats was seen in the inner medulla, outer medulla, and cortex. Thus, neither systemic nor interstitial osmolality appears to appreciably be correlated with downregulation of kidney AQP-2 expression during escape from antidiuresis. These results therefore suggest that additional vasopressin- and osmolality-independent factors, likely related to the effects of extracellular fluid volume expansion, also regulate kidney AQP-2 expression in rats.


1992 ◽  
Vol 12 (5) ◽  
pp. 809-816 ◽  
Author(s):  
Lars Gisselsson ◽  
Maj-Lis Smith ◽  
Bo K. Siesjö

Preischemic hyperglycemia, which raises tissue lactate content during ischemia, is known to aggravate ischemic brain damage. To explore the possibility that the enhanced lactic acidosis gives rise to osmotic damage, we studied the influence of a varied preischemic plasma glucose concentration on the early postischemic edema. Brain edema was measured by the specific-gravity technique. Brain and plasma osmolality were measured with a vapor pressure osmometer. We examined different brain regions in hyperglycemic and moderately hypoglycemic rats subjected to 15 min of forebrain ischemia, followed by recirculation for 5, 15, and 30 min. The decrease in specific gravity was compared with the increase in osmolality, to study whether the edema formation in the different groups correlated to the increase in tissue osmolality. We found edema formation to be most pronounced in frontoparietal cortex. In this structure and in hippocampus, statistically significant decreases of specific gravity were seen at all recirculation times studied. In caudoputamen, significant edema was seen only in the groups with 5 and 15 min of recirculation. Contrary to expectations, no difference was found between hyperglycemic and hyperglycemic animals. Tissue osmolality increased during ischemia in both the low and high glucose groups, but to a higher level in the latter (hypoglycemia 311 ± 1 mmol kg−1, hyperglycemia 328 ± 10 mmol kg−1; mean ± SD, p < 0.05). In the hyperglycemic group, brain osmolality remained elevated for the first 15 min of recirculation. Plasma osmolality also increased during ischemia in the two situations studied and remained increased during the first 15 min of recirculation. In spite of the higher brain osmolality during ischemia and the early recirculation phase in the hyperglycemic animals, theoretically favoring influx of water into brain tissue, we failed to observe increased edema formation in the hyperglycemic animals, probably due to the increased plasma osmolality, partly balancing the rise in brain osmolality and restricting water influx when cerebral blood flow was restored. We conclude that the fatal outcome in hyperglycemic animals is not likely caused by a more pronounced edema in the early recirculation phase.


1991 ◽  
Vol 143 (3) ◽  
pp. 271-277 ◽  
Author(s):  
D.-A. HALLBÄCK ◽  
M. JODAL ◽  
M. MANNISCHEFF ◽  
O. LUNDGREN

Sign in / Sign up

Export Citation Format

Share Document