membrane protein type
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 3)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 22 (5) ◽  
pp. 2532
Author(s):  
Martijn J. C. van der Lienden ◽  
Jan Aten ◽  
André R. A. Marques ◽  
Ingeborg S. E. Waas ◽  
Per W. B. Larsen ◽  
...  

The lysosomal storage disease Niemann–Pick type C (NPC) is caused by impaired cholesterol efflux from lysosomes, which is accompanied by secondary lysosomal accumulation of sphingomyelin and glucosylceramide (GlcCer). Similar to Gaucher disease (GD), patients deficient in glucocerebrosidase (GCase) degrading GlcCer, NPC patients show an elevated glucosylsphingosine and glucosylated cholesterol. In livers of mice lacking the lysosomal cholesterol efflux transporter NPC1, we investigated the expression of established biomarkers of lipid-laden macrophages of GD patients, their GCase status, and content on the cytosol facing glucosylceramidase GBA2 and lysosomal integral membrane protein type B (LIMP2), a transporter of newly formed GCase to lysosomes. Livers of 80-week-old Npc1−/− mice showed a partially reduced GCase protein and enzymatic activity. In contrast, GBA2 levels tended to be reciprocally increased with the GCase deficiency. In Npc1−/− liver, increased expression of lysosomal enzymes (cathepsin D, acid ceramidase) was observed as well as increased markers of lipid-stressed macrophages (GPNMB and galectin-3). Immunohistochemistry showed that the latter markers are expressed by lipid laden Kupffer cells. Earlier reported increase of LIMP2 in Npc1−/− liver was confirmed. Unexpectedly, immunohistochemistry showed that LIMP2 is particularly overexpressed in the hepatocytes of the Npc1−/− liver. LIMP2 in these hepatocytes seems not to only localize to (endo)lysosomes. The recent recognition that LIMP2 harbors a cholesterol channel prompts the speculation that LIMP2 in Npc1−/− hepatocytes might mediate export of cholesterol into the bile and thus protects the hepatocytes.


Author(s):  
Glenda Anak Kaya ◽  
Nor Ashikin Mohamad Kamal

<span lang="EN-US">As the number of protein sequences in the database is increasing, effective and efficient techniques are needed to make these data meaningful.  These protein sequences contain redundant and irrelevant features that cause lower classification accuracy and increase the running time of the computational algorithm. In this paper, we select the best features using Minimum Redundancy Maximum Relevance(mRMR) and Correlation-based feature selection(CFS) methods. Two datasets of human membrane protein are used, S1 and S2.  After the features have been selected by mRMR and CFS, K-Nearest Neighbor(KNN) and Support Vector Machine(SVM) classifiers are used to classify these membrane proteins. The performance of these techniques is measured using accuracy, specificity and sensitivity. and F-measure. The proposed algorithm managed to achieve 76% accuracy for S1 and 73% accuracy for S2. Finally, our proposed methods present competitive results when compared with the previous works on membrane protein classification</span><span>.</span>


2018 ◽  
Vol 16 ◽  
pp. 396-403 ◽  
Author(s):  
Georgina Csizmadia ◽  
Bianka Farkas ◽  
Zoltán Spagina ◽  
Hedvig Tordai ◽  
Tamás Hegedűs

Author(s):  
Juan D. Clares ◽  
Victoria Sanchez ◽  
Antonio M. Peinado ◽  
Juan A. Morales-Cordovilla ◽  
Concepcion Iribar ◽  
...  

2016 ◽  
Vol 113 (14) ◽  
pp. 3791-3796 ◽  
Author(s):  
Friederike Zunke ◽  
Lisa Andresen ◽  
Sophia Wesseler ◽  
Johann Groth ◽  
Philipp Arnold ◽  
...  

The lysosomal integral membrane protein type-2 (LIMP-2) plays a pivotal role in the delivery of β-glucocerebrosidase (GC) to lysosomes. Mutations in GC result in Gaucher's disease (GD) and are the major genetic risk factor for the development of Parkinson's disease (PD). Variants in the LIMP-2 gene cause action myoclonus-renal failure syndrome and also have been linked to PD. Given the importance of GC and LIMP-2 in disease pathogenesis, we studied their interaction sites in more detail. Our previous data demonstrated that the crystal structure of LIMP-2 displays a hydrophobic three-helix bundle composed of helices 4, 5, and 7, of which helix 5 and 7 are important for ligand binding. Here, we identified a similar helical motif in GC through surface potential analysis. Coimmunoprecipitation and immunofluorescence studies revealed a triple-helical interface region within GC as critical for LIMP-2 binding and lysosomal transport. Based on these findings, we generated a LIMP-2 helix 5-derived peptide that precipitated and activated recombinant wild-type and GD-associated N370S mutant GC in vitro. The helix 5 peptide fused to a cell-penetrating peptide also activated endogenous lysosomal GC and reduced α-synuclein levels, suggesting that LIMP-2–derived peptides can be used to activate endogenous as well as recombinant wild-type or mutant GC efficiently. Our data also provide a structural model of the LIMP-2/GC complex that will facilitate the development of GC chaperones and activators as potential therapeutics for GD, PD, and related synucleinopathies.


Sign in / Sign up

Export Citation Format

Share Document