heat recirculation
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 20)

H-INDEX

18
(FIVE YEARS 3)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 447
Author(s):  
Qiang Chen ◽  
Mingming Mao ◽  
Min Gao ◽  
Yongqi Liu ◽  
Junrui Shi ◽  
...  

The catalytic combustion has the advantage of lower auto-ignition temperature and helps to expand the combustible limit of lean premixed gas. However, the intake needs to be preheated to certain temperature commonly through an independent heat exchanger. Similar to the principles of non-catalytic RTO combustion, this paper presents a similar approach whereby the combustion chamber is replaced by a catalytic combustion bed. A new catalytic reactor integrated with a heat recuperator is designed to enhance the heat recirculation effect. Using a two-dimensional computational fluid dynamics model, the performance of the reactor is studied. The reaction performances of the traditional and compact reactors are compared and analyzed. Under the same conditions, the compact reactor has better reaction performance and heat recirculation effect, which can effectively decrease the ignition temperature of feed gas. The influences of the inlet velocity, the inlet temperature, the methane concentration, and the thermal conductivity of porous media on the reaction performance of integrated catalytic reactor are studied. The results show that the inlet velocity, inlet temperature, methane concentration, and thermal conductivity of porous media materials have important effects on the reactor performance and heat recirculation effect, and the thermal conductivity of porous media materials has the most obvious influence. Moreover, the reaction performance of multiunit integrated catalytic reactor is studied. The results show that the regenerative effect of multiunit integrated catalytic reactor is further enhanced. This paper is of great significance to the recycling of low calorific value gas energy and relieving energy stress in the future.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6322
Author(s):  
Bhanuprakash Reddy Guggilla ◽  
Jack Perelman Camins ◽  
Benjamin Taylor ◽  
Smitesh Bakrania

Microcombustion attracts interest with its promise of energy dense power generation for electronics. Yet, challenges remain to develop this technology further. Thermal management of heat losses is a known hurdle. Simultaneously, non-uniformities in heat release within the reaction regions also affect the device performance. Therefore a combination of thermal management strategies are necessary for further performance enhancements. Here, a bench top platinum nanoparticle based microcombustion reactor, coupled with thermoelectric generators is used. Methanol-air mixtures achieve room temperature ignition within a catalytic cartridge. In the current study, the reactor design is modified to incorporate two traditional thermal management strategies. By limiting enthalpic losses through the exhaust and reactor sides, using multi-pass preheating channels and heat recirculation, expected improvements are achieved. The combined strategies doubled the power output to 1.01 W when compared to the previous design. Furthermore, a preliminary study of catalyst distribution is presented to mitigate non-uniform catalytic activity within the substrate. To do this, tailored distribution of catalyst particles was investigated. This investigation shows a proof-of-concept to achieve localized control, thus management, over heat generation within substrates. By optimizing heat generation, a highly refined combustion-based portable power devices can be envisioned.


2021 ◽  
Vol 11 (16) ◽  
pp. 7496
Author(s):  
Qingqing Li ◽  
Jiansheng Wang ◽  
Jun Li ◽  
Junrui Shi

Inserting porous media into the micro-scale combustor space could enhance heat recirculation from the flame zone, and could thus extend the flammability limits and improve flame stability. In the context of porous micro-combustors, the pore size is comparable to the combustor characteristic length. It is insufficient to treat the porous medium as a continuum with the volume-averaged model (VAM). Therefore, a pore-scale model (PSM) is developed to consider the detailed structure of the porous media to better understand the coupling among the gas mixture, the porous media and the combustor wall. The results are systematically compared to investigate the difference in combustion characteristics and flame stability limits. A quantified study is undertaken to examine heat recirculation, including preheating and heat loss, in the porous micro-combustor using the VAM and PSM, which are beneficial for understanding the modeled differences in temperature distribution. The numerical results indicate that PSM predicts a scattered flame zone in the pore areas and gives a larger flame stability range, a lower flame temperature and peak solid matrix temperature, a higher peak wall temperature and a larger Rp-hl than a VAM counterpart. A parametric study is subsequently carried out to examine the effects of solid matrix thermal conductivity (ks) on the PSM and VAM, and then the results are analyzed briefly. It is found that for the specific configurations of porous micro-combustor considered in the present study, the PSM porous micro-combustor is more suitable for simplifying to a VAM with a larger Φ and a smaller ks, and the methods can be applied to other configurations of porous micro-combustors.


Heat Transfer ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 992-1020
Author(s):  
Saeid Malekian ◽  
Shilan Heidarilalabadi ◽  
Navid Malekian ◽  
Hesam Moghadasi ◽  
Mehdi Bidabadi

Sign in / Sign up

Export Citation Format

Share Document